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Abstract

We present a lightweight system to extract, store and manage metadata and prove-
nance information of common artifacts in machine learning (ML) experiments:
datasets, models, predictions, evaluations and training runs. Our system accelerates
users in their ML workflow, and provides a basis for comparability and repeata-
bility of ML experiments. We achieve this by tracking the lineage of produced
artifacts and automatically extracting metadata such as hyperparameters of models,
schemas of datasets or layouts of deep neural networks. Our system provides a
general declarative representation of said ML artifacts, is integrated with popular
frameworks such as MXNet, SparkML and scikit-learn, and meets the demands of
various production use cases at Amazon.

1 Introduction

When developing and productionizing ML models, a major proportion of the time is spent on conduct-
ing model selection experiments which consist of training and tuning models and their corresponding
features [22, 4, 14, 20, 27, 3]. Typically, data scientists conduct this experimentation in their own
ad-hoc style without a standardized way of storing and managing the resulting experimentation data
and artifacts. As a consequence, the results of these experiments are often not comparable, as there
is no standard way to determine whether two models had been trained on the same input data, for
example. Even more, it is tedious and time-consuming to repeat successful results later in time, and it
is hard to get an overall picture of the progress made in ML tasks towards a specific goal, especially in
larger teams. Simply storing the artifacts (datasets, models, feature sets, predictions) produced during
experimentation in a central place is unfortunately insufficient to mitigate this situation. Achieving
repeatability and comparability of ML experiments forces one to understand the metadata and, most
importantly, the provenance of artifacts produced in ML workloads [14]. For example, in order
to re-use a persisted model, it is not sufficient to restore its contents byte by byte; new input data
must also be transformed into a feature representation that the model can understand, so information
on these transforms must also be persisted. As another example, in order to reliably compare two
experiments, we must ensure that they have been trained and evaluated using the same training and
test data respectively, and that their performance was measured by the same metrics.

To address the aforementioned issues and assist data scientists in their daily tasks, we propose a
lightweight system for handling the metadata of ML experiments. This system allows for managing
the metadata (e.g., Who created the model at what time? Which hyperparameters were used? What
feature transformations have been applied?) and lineage (e.g., Which dataset was the model derived
from? Which dataset was used for computing the evaluation data?) of produced artifacts, and
provides an entry point for querying the persisted metadata. Data scientists can leverage this service
to enable a variety of previously hard-to-achieve functionality, such as regular automated comparisons
of models in development to older models (similar to regression tests for software). Additionally, the
proposed service helps data scientists to easily ad-hoc test their models in development and provides
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a starting point for quantifying the accuracy improvements that teams achieve over time towards a
specific ML goal, e.g., by storing and analyzing the evaluation results of their models over time and
showing them via a leaderboard.

In order to ease the adoption of our metadata tracking system, we explore techniques to automatically
extract experimentation metadata from common abstractions used in ML pipelines, such as ‘data
frames’ which hold denormalized relational data, and ML pipelines which comprise a way to define
complex feature transformation chains composed of individual operators. For applications built
on top of these abstractions, metadata tracking should not require more effort than exposing a few
data structures to our tracking code. As already mentioned, we view the establishment of a central
metadata repository as a foundation for further functionality to be built on top of. We especially
think that such a repository of historical experimentation data would pave the way for advanced meta
learning. The contributions of this paper are as follows:

• We introduce the design decisions for our system and present a database schema for modeling
the corresponding metadata across a variety of ML frameworks (Section 2).

• We detail how to extract metadata describing ML models defined in the abstractions of
popular ML frameworks such as pipelines and computational graphs of neural networks,
and describe how to store this metadata using our database schema (Section 3).

• We discuss directions and requirements for future ML frameworks in order to streamline the
metadata capturing process (Section 5).

2 System Design

We introduce the architecture of our system and discuss the underlying database schema which allows
us to store general, declarative representations of the ML experiments.
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Figure 1: System architecture: ML applications
store serialized artifacts on a distributed filesystem
and use framework-specific extraction libraries to
store the corresponding metadata in our centralized
system. The resulting metadata is consumed by
reporting and regression testing applications.

Architecture. We briefly describe the architec-
ture of our system as illustrated in Figure 1. The
experimentation metadata is stored in a docu-
ment database and our system backend runs in
a serverless manner on AWS. Clients commu-
nicate with this backend via a REST API, for
which we provide autogenerated clients for a va-
riety of languages. We currently offer low-level
REST-based clients for the JVM and Python, as
well as high-level clients that are geared towards
popular ML libraries such as SparkML [15],
scikit-learn [18], MXNet [5] and UIMA [9].
These high-level clients provide convenience
functionality for the libraries, especially in the
form of automated metadata extraction from in-
ternal data structures. Examples include extract-
ing the structure of pipelines and DataFrames in
SparkML or the symbolic network definition in
MXNet. The metadata and provenance information is consumed by applications such as dashboards,
leaderboards, email notifiers and regression tests against historical evaluation results, and can also
be queried interactively by individual users. Furthermore, we have means for importing publicly
available experimentation data from repositories such as OpenML [25].

Data model. The major challenge in designing a data model for experimentation metadata is the
trade-off between generality and interpretability of the schema. The most general solution would
be to simply store all data as bytes with arbitrary tags in key-value form attached. Such metadata
however would be very hard to automatically interpret and analyze later, as no semantics are enforced.
A too narrow schema on the other hand might hinder adoption of our service, as it does not allow
scientists to incorporate experimentation data from a variety of use cases.

We propose a middle ground with a schema that strictly enforces the storage of lineage information
(e.g., which dataset was used to train a model) and ML-specific attributes (e.g., hyperparameters
of a model), but still provides flexibility to its users by supporting arbitrary application-specific
annotations. This choice is inspired by ‘open’ data models offered in modern data processing
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OutlineDataset-Metadata
id - string
name - string
location - string
version - string
schema - array<TypedColumn>
dataStatistics – array<DataStatistic>
histograms - array<Histogram>
derivedFromDatasetId - string
annotations – map<string,string>

Model-Metadata
id – string
name - string
version – string
fromFramework – string
fromFrameworkVersion - string
trainedOnDatasetId - string
learningAlgorithm - string
hyperparameters - array<HyperParameter>
location - string
transforms - array<Transform>
annotations – map<string,string>

Transform
id – string
name – string
version – string
fromFramework – string
fromFrameworkVersion - string
state – string
inputTransforms – array<string>
input - array<TypedColumn>
output - array<TypedColumn>
parameters - array<HyperParameter>

Evaluation
id  - string
name  - string
computedByModelId - string
computedOnDatasetId - string
forPredictionId - string
tags - array<Tag>
scores - array<Score>

Tag
name - string
value - string

HyperParameter
name - string
typing - TypeHint
value – string
nonDefault – boolean
trackedByUser - boolean

Histogram
column - string
typing – TypeHint
bucketLabels – array<string>
bucketValues – array<string>

Score
metric – string
typing – TypeHint
value - string

TypedColumn
name - string
typing - TypeHint

DataStatistic
name – string
columns - array<string>
typing – TypeHint
value - string

TrainingRun
id – string
forModelId – string
startTime – long
endTime - long
state – ModelState
environment – map<string,string>
scoresOverTime – array<ScoreAtTime>
hyperparameters - array<HyperParameter>
transforms - array<Transform>
annotations – map<string,string>

ScoreAtTime
timestamp - long
epoch – int
score – Score

Prediction-Metadata
id - string
location - string
computedByModelId - string
computedOnDatasetId - string
schema - array<TypedColumn>
annotations – map<string,string>

Figure 2: Simplified version of our schema used to store artifact metadata and lin-
eage information. A detailed version available under Apache license can be found at
https://github.com/awslabs/ml-experiments-schema. Bold attributes indicate lineage re-
lationships and every entity can be extended via arbitrary key-value pairs stored in the annotation
attribute.

systems [1]. The most important principle we embrace is declarativity: we store metadata of the
artifacts but not code that produces them1, and only store pointers to the actual input data or serialized
model parameters. This enforces a strict decoupling, and enables querying and analysis of the
metadata and lineage. Declarativity allows us to avoid storing compiled code, which is dangerous, as
it moves this code out of control of the versioning and reviewing system, and makes it very hard to
fix potential bugs. Another important principle for our service is immutability: metadata entries are
only written once, ruling out a variety of potential consistency problems. Furthermore, immutability
of written entries contributes to establishing a historical record of experiments.

We manage the metadata of the following experiment artifacts: datasets, models, predictions, and
training runs. Furthermore, we explicitly manage the evaluation results of the experiments. Figure 2
illustrates the corresponding schema of the database of our service. The metadata for datasets is
captured by the Dataset-Metadata entity, which stores name and version of the dataset, its column
names and their respective types, as well as a URI pointer to the actual storage location of the
dataset. Models are represented by the Model-Metadata entity which stores a link to the metadata
of the input dataset to capture the lineage of the computation. We provide a name for the model,
its hyperparameters and their types, as well as the name of the associated learning algorithm and
its version. Furthermore, we represent the metadata of the data transformations describing the
transformation of the input data by this model via a graph of Transform entities. Note that we do
not explicitly represent the model’s parameters in order to ensure generality of our system; we just
store a pointer to a serialized version of the parameters. Additionally, a model can have an associated
Training-Run entity (the only mutable entity in our schema), which tracks live execution and captures
statistics like the training loss over time and the computational environment. The metadata for
predictions produced by a model is represented by the Prediction-Metadata entity. Here we retain the
lineage of the artifacts by storing links to the model which produced the predictions as well as to the
dataset for which the predictions were computed. Additionally, we save the schema of the prediction
data as well as a pointer to the actual, serialized prediction data. Evaluation data is represented by the
Evaluation entity, for which we allow users to store customizable scores and tags. This entity has an
optional link to the corresponding prediction entity, and mandatory pointers to the metadata entries
for the model and evaluation dataset.

1We advise users to manage their ML code in git and use the git commit id to version the corresponding metadata.
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3 Automating Metadata Extraction

In the following, we discuss our metadata extraction functionality for two different types of ML
workloads: parameterized ‘pipelines’ in SparkML and scikit-learn which operate on tabular data and
neural networks defined in MXNet via symbolic computational graphs that operate on tensor data.

Dataframes and pipelines in SparkML. ML workloads in SparkML operate on DataFrames, a
relational abstraction for a partitioned (and often denormalized) table with a well-defined schema
(modeled via Spark’s StructType abstraction). The transformations applied to the data are modeled
as stages of a pipeline (via the PipelineStage abstraction), inspired by scikit-learn’s popular
pipeline abstraction. Typically, such a pipeline consists of preprocessing and feature transformation
operations, followed by a model training stage. After being ‘fitted’ to data, a pipeline produces a
so-called PipelineModel, which represents a trained model with a fixed feature transformation
procedure that can be applied to new data. The architecture of SparkML pipelines allows us to
automatically track all the schema transformations (e.g, reading, adding and removing columns)
which pipeline operators conduct, as well as the parameterization of the operators. The abstraction
however does not allow us to inspect the internal implementation details (e.g., the mathematical
operations applied by ML models), as pipeline operator implementations have been designed as
black boxes. In order to track the data transformations applied by the pipeline in detail, we extract
the schema of the input data frame and replay the changes the pipeline conducts by calling the
transformSchema method of each pipeline stage and recording the resulting schema changes.
Furthermore, we inspect certain pipeline stage parameters (modeled via Spark’s Params class)
like HasInputCol or HasFeaturesCol which denote which columns of the dataframe an operator
consumes as input. This allows us to create a directed acyclic graph (DAG) representation of the
data transformations applied by the pipeline, where the vertices of the DAG correspond to dataframe
columns and the edges denote pipeline operators which consume said columns to produce additional
columns. We model these DAGs via a graph of Transformation entities from our database schema and
provide them to users for visual inspection of their data processing pipelines. Furthermore we inspect
and store the parameterization of each pipeline operator, including the hyperparameters of models
such as maxIter denoting the maximum number of iterations to run when learning a regression
model.

Pipelines in scikit-learn. We process scikit-learn’s pipelines (sklearn.pipelines) analogous to
SparkML pipelines, with the difference that we cannot recreate the schema transformations, as these
are not included in the Pipeline abstraction (which not necessarily operates on dataframe-like
inputs). We are however able to extract a data transformation DAG (created by combining pipeline
operators with FeatureUnion) and pipeline operator hyperparameters by inspecting the result of the
get_params() method on pipeline stages.

Deep neural networks in MXNet. Tracking workloads employing deep neural networks (DNNs)
lets us apply a more detailed extraction than in the previous cases. The reason for this is that DNN
frameworks offer their users a very fine-grained abstraction to declaratively define their models by
combining mathematical operators (e.g., linear layers, convolutions, activation functions) into the
layout of the network to learn. Therefore, the models in DNN use cases are not black boxes (as in
SparkML or scikit-learn), where the actual implementation details are hidden deeply in the code. We
use the popular DNN engine MXNet [5] as an example and extract metadata about the models as
follows: A DNN is modeled as a DAG of symbols representing the operators to apply (often this is
called the computational graph of the network). This graph is typically given to a Module abstraction
which represents a model combined with a learning algorithm and its hyperparameters, which can be
trained on data. We get hold of the underlying computational graph by inspecting its output symbols
from the module and call symbol.tojson() to retrieve a declarative representation of the DNN.
We recreate the layout of the graph by inspecting the op, input, name and attr attributes of the
graph operators, and convert the layout to a DAG of Transform entities in our database schema. We
peek into the input data to extract its dimensionality and have MXNet infer the input and output
dimensions of each operator via a call to .infer_shape_partial on the symbols of the graph.
We store these shapes as parameterizations of the network operators. Furthermore, we track the
hyperparameters of the applied learning algorithm by inspecting the corresponding optimizer settings
in module._optimizer.

Example. We show how to enable metadata tracking for a classification model trained with MXNet.
The code for this example is illustrated in Figure 3, where the highlighted parts refer to code
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1 mod = mx.mod.Module(mlp)
2 run = experiment
3 .track_training(mod)
4
5 mod.fit(
6 train_data=trainset ,
7 eval_data=validationset ,
8 epoch_end_callback=
9 run.log_train_metric (),

10 eval_end_callback=
11 run.log_eval_metric ())
12
13 experiment.track_model(mod ,
14 name=’MXNet ...’, trained_on=
15 trainset_metadata ,
16 training=run , serialize=True)
17
18 accuracy = mx.metric.Accuracy ()
19 mod.score(testset , ’acc’)
20
21 experiment.track_evaluation(
22 by_model=model_metadata ,
23 on_dataset=testset_metadata ,
24 scores=accuracy)

Figure 3: Tracking training loss
(in realtime), model metadata and
evaluation results in MXNet.

Figure 4: User interface with access to training loss over time,
model hyperparameters, network layout and specifics of com-
puting environment.

from our MXNet specific metadata extraction library. We assume that the dataset has already
been registered with our service (whose API is available via the experiment variable) and the
corresponding metadata entries for the trainset and testset have been loaded from our system as
trainset_metadata and testset_metadata. In the first line, an MXNet module is created from
the network definition mlp. Afterwards, a Training-Run for this module is registered with our system
via the call to track_training. In the lines 5 to 11, the training for the module is conducted via
its fit method. Note that we register two callback functions with the module in lines 9 and 11,
which allow our previously created training run object to observe the training and validation loss of
each epoch. These metrics are communicated to our system in a separate thread and allow the user
executing the training to monitor the training in real time via an external dashboard application shown
in Figure 4. Additionally, the training run automatically captures information about the computing
environment, e.g. the type of processor used.

After having successfully trained the model, we register it with our system via the track_model call
in lines 13 to 16. Users give a name to the model and again have to provide the metadata entry for
the corresponding trainingset via the trained_on argument (in order to enable our system to record
the lineage). Furthermore, they can specify that the resulting model should be serialized, in which
case we store the model in a distributed filesystem and add a pointer to its storage location in the
corresponding Model-Metadata entry in our database. Note that the implementation of track_model
understands MXNet models and will automatically extract hyperparameters and network layout
as previously discussed. Again, all extracted metadata is presented and visualized to users via the
dashboard shown in Figure 4. Finally we evaluate the classification accuracy of our model on the
testset via the mod.score call in lines 18 and 19. We store these evaluation results in our system
with the track_evaluation call, which will create an Evaluation entry in our database. Note
that we force users to specify both the metadata of the corresponding model (the computed_by
argument) as well as the metadata of the test dataset used (the on_dataset argument), so that our
system can track the provenance of the evaluation data by linking the corresponding Model-Metadata,
Dataset-Metadata and Evaluation entries in our database. Retaining such lineage information is
crucial when we have to decide later whether two evaluation results can be reliably compared.

4 Related Work

In order to foster collaboration between scientists, platforms such as OpenML [25] and the W3C
ML Schema initiative [12] allow researchers to share descriptions and evaluation results of their ML
experiments. However, these approaches do not model the artifacts produced during experiments (and
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their lineage) in the same detail as our system; for example, there is no entity for modeling the DAG
structure of feature transformation flows. Thereby, they partially lose potential for building automated
systems that leverage the historical data. Managing and efficiently executing model selection
workloads has been identified as an upcoming challenge [14, 13, 21] in the data management
community. The ModelDB [26] project puts a specific focus on organizing models, and comes
very close to our system design-wise with the difference that we support more general classes of
models (such as neural networks) and add more detailed tracking of dataset provenance and applied
schema transformations. Other classes of systems specialize on deep learning [17], aim at efficiently
serving the resulting models for prediction [6, 7] or concentrate on tracking and indexing provenance
information [16, 19, 8]. Modeling ML workloads via pipelines (which are typically inspired by the
‘estimator/transformer’ abstraction in scikit-learn [18]) and efficiently executing such pipelines at
scale has become an active area of research. Established work describes production systems and
platforms [4, 3], investigates software engineering aspects [22, 24] and pipeline abstractions for
machine learning workloads [2], often on top of the massively parallel dataflow system Apache Spark,
e.g., in SparkML [15] and KeystoneML [23]. An exciting area of research is the investigation of the
potential of historical experimentation data for meta learning [11, 10].

5 Conclusion

We have presented our design choices for a lightweight system to extract and store metadata and
provenance of ML experimentation data. Furthermore, we discussed in detail how to automatically
extract such data from common abstractions in publicly available ML frameworks. We see a huge
potential in enabling declarative management of said metadata: data scientists are provided with
infrastructure that allows them to accelerate their experimentation via dashboards and leaderboards
that list experiments, email notifications which summarize experimentation progress, and automated
regression tests for the prediction quality of ML libraries during development, which compare the
results on hold out data with historical prediction results upon every commit to the library. Systems
like ours will allow companies to accelerate their experimentation and innovation cycle, and, at the
same time, form a corner stone of replicable ML model training, which will become more important
in the light of potentially upcoming legal requirements for the real-world usage of machine learning.

Limitations. A limitation of our approach is that the tracked ML application must be able to identify
the logical operations which are applied to the data. In legacy applications, this might not necessarily
be the case unfortunately, as the developers might not have introduced the necessary abstractions. In
such cases, hand-tailored code is usually required to get the desired metadata. We think that the design
of future ML frameworks should place a focus on a clear separation of logical and physical operations
and build on existing abstractions for modeling ML pipelines. Additionally, external systems like
ours should be able to query the metadata of the defined logical operations. As discussed in Section 3,
the declarative definition of computational graphs for DNNs from mathematical operators is a prime
example of how to achieve this separation. Furthermore, we currently rely on users understanding our
complex schema and correctly integrating their code with our API. We aim to increase the automation
of our extraction code and to decrease the amount of additional code required to enable the metadata
tracking in a workload.

Ongoing and future work. During integrations of various use cases, we have come across a set of
challenges, which we will address in the near future. Examples include the integration of ensembles
that train a variety of models on different datasets and combine them in a complex final model, or how
to model the provenance relations between the training sets and validation sets during cross-validation
in our schema. Furthermore, we already encountered use cases where it would be beneficial to extend
our data model with an enclosing abstraction for the produced artifacts (an ‘experiment session’),
e.g., in cases, where we train several models which we want to identify again later to compare them
against each other. Users achieve this manually via dedicated entity annotations at the moment. Our
long term research goals include the enablement of meta learning on top of our experiment repository,
with the goal of recommending features or algorithms for new datasets. In order to achieve progress
in this area, it might be necessary to introduce a ‘task’ abstraction for experiments, analogous to what
OpenML provides – which can be quite difficult for real world use cases, where there is often no
clear single target metric to optimize for [4].

Acknowledgements. We would like to thank our interns Jean-Baptiste Cordonnier and Minori Inoue
for their contributions, and Matthias Seeger for fruitful discussion on the initial ideas for the system.
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