
Solving imperfect information games on
heterogeneous hardware by operation aggregation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Solving large-scale imperfect information game is one of the most challenging1

tasks in machine learning, the difficulties come both from algorithm design and2

system support. From the perspective of system, the computation pattern of3

existing algorithm for solving imperfect information is complex and irregular. As a4

result, despite GPU provides powerful computing power and becomes the standard5

on training neural networks, most algorithms for solving imperfect information6

games still only work on CPU clusters. In this paper, we present a two-phase7

aggregation procedure to refactor the execution plan for the algorithms designed to8

solve imperfect information games. This procedure first aggregates isolated scalar9

operations into vector operations, then it further combines some of those vector10

operations into matrix operations that can be expressed by Basic Linear Algebra11

Subprograms (BLAS). We evaluate our methods by running the Counterfactual12

Regret Minimization (CFR) algorithm to solve two games, Bluff and Heads-Up13

Flop Hold’em Poker. Results shown that, comparing with the single thread CPU14

implementation, our aggregation procedure achieved an acceleration ratio of more15

than 31 times. Furthermore, as the game size increase, the acceleration ratio16

become higher.17

1 Introduction18

Extensive-form game with imperfect information is a general framework that can model real-world19

sequential decision-making problems with imperfect information, like trading, auctions, negotiations,20

etc. Solving the imperfect information games can have great impact in the real world. Unlike in21

the research lab, real world problems have high requirements for computation resources due to the22

problem size. Thus, the implementation must exploit all the computation power of heterogeneous23

hardware, including CPU, GPU, FPGA and all the other special designed devices.24

Currently, the state-of-the-art solution for solving imperfect information games are purely running on25

CPU clusters [Brown and Sandholm, 2017a]. The reason is that, heterogeneous hardware except CPU26

are specially designed for a certain type of task, e.g. fast matrix multiplication. Thus, they can not27

perform operations as efficient and flexible as the CPU. In contrast, in making full use of hardware28

computing power, systems for solving perfect information game doing very well. The most famous29

example is AlphaGo, which employs Neural Network (NN) for state generalization and Monte-Carlo30

Tree Search (MCTS) for searching [Silver et al., 2016, 2017]. The MCTS part runs on CPUs and31

NN part runs on GPU or Tensor Processing Unit (TPU). In imperfect information games, due to the32

existence of hidden information, the outcome varies largely given the same history of public actions.33

NNs are not good at handling this situation, thus it is only used on small-scale games as research34

attempts [Brown et al., 2018; Moravčík et al., 2017]. Be specific, Libratus [Brown and Sandholm,35

2017a,b], the system which beats top human players in the Texas hold’em poker game, is trained36

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.



Serial Branched

Parallelism

Utilization

Memory

Flattened
0

1 2

3

6

4

5

7

8

Game Tree Serial Branched Flattened

0
1
2
...
7
8

0
1

0
2
3

0
2
4
5
6

0
2
4
5
7

0
2
4
8

0    
1      2
3      4
5      8
6      7

Figure 1: Execution Analysis

over 25 million of CPU hours which is rather time-consuming, while leaving the powerful GPU cards37

idled.38

An algorithm can be seen as a series of basic operations, and an execution plan refers to how to39

perform those operations, such as on what hardware and in which order. 1 Our key observation40

is that, on imperfect information games some states are indistinguishable, this character makes it41

is possible to handle those states in a uniform manner. Based on this observation, we introduce a42

two-phase aggregation procedure to refactor the default execution plan of the algorithm to exploit43

the computation power of heterogeneous hardware. Be specific, each possible game situation in the44

imperfect information game is called a state. Due to the existence of private actions, the player or45

audience can only specify a set of indistinguishable states, named the information set (infoset), that46

might be the current state. On the first phase, states belonging to the same infoset are aggregated47

together, and scalar operations on those states are replaced by a vector operation on that infoset. On48

the second phase, operations that can be expressed by a dot product or its variation, will be aggregate49

together and replaced by a single BLAS operation. Thus, the first-phase aggregation exploits the50

parallel computing power and the second-phase takes the advantage of the hardware’s acceleration on51

BLAS operations. 2 Noteworthy, this procedure did not rely on any implementation level features,52

such as memory access pattern. Thus, it can be widely used in various scenarios and keeps transparent53

to the algorithm side researcher and practitioner.54

We evaluate the performance of the operation aggregation by running the CFR algorithm on different55

size of bluff and heads-up flop hold’em poker. We compare three different execution plan: the56

serial, the flattened and the aggregated. The serial plan runs on a single CPU core, and flattened and57

aggregated plans run on a single GPU card, details will be described in section2. Results shown that58

the running time of each round of the aggregated plan is less than one-thirtieth of the serial plan,59

while only requires the same amount of the GPU memory as the serial plan required for the main60

memory. On the other hand, despite the flattened plan is as fast as the aggregated plan on the running61

speed, its memory consumption is much larger, which also keeps it away from solving large-scale62

problems. Thus, our aggregation procedure is the most suitable plan for solving large-scale imperfect63

information games.64

2 Execution Analysis65

In this section, we adopt a subgame of the heads-up flop hold’em poker to analysis the detail of66

different execution plans. The performance differences between different execution plans are rooted67

in the hardware characteristics. Taking CPU and GPU as an example, CPU has the advantage of high68

frequency and out-of-order execution supporting, but it only has several cores. In contrast, GPU has69

thousands of cores but each of them is much slower and weaker than the CPU core. As a result, we70

need to design targeted execution plan to make efficient use of the heterogeneous hardware.71

We analysis three typical execution plans, namely serial, branched and flattened. On Fig.1, the left72

part is the game tree of the subgame, the middle part illustrates the visiting sequence of each execution73

plan on that subgame, and the right part compares the characteristics of these execution plans.74

1The term “Execution plan” is used by the database community. On other research community e.g. program
optimization or multi-threading, they use instance or schedule to name it.

2GPU provide special designed processing unit, Tenseo Core, to accelerate the BLAS operations.
https://www.nvidia.com/en-us/data-center/tensorcore/

2



Algorithm 1 Counterfactual Regret Minimization
1: function TREETRAVERSE(infoset, reaching_prob)
2: if infoset is terminal then
3: return utility(infoset)
4: end if
5: reward = [], reward_sum = 0
6: for action ∈ valid actions(infoset) do
7: next_reaching_prob = reaching_prob * strategy(infoset, action),
8: next_infoset = simulate(infoset, action)
9: reward[action] = TreeTraverse (next_infoset, next_reaching_prob)

10: reward_sum = reward_sum + reward[a]
11: end for
12: oppo_reward = <reward · reaching_prob[opponent]>
13: strategy(I) = RegretMatching(oppo_reward, reaching_prob)
14: return reward_sum
15: end function

A serial execution plan simply visits the tree node one by one. It is the by default execution plan,75

which does not have any parallelism, but are good at hardware utilization and the memory cost is76

small. In order to improve the parallelism, the most straightforward way is to assign each leaf node77

an independent execution flow, so different leaf node can be processed in parallel. The parallelism78

of branched execution plan is good, and the memory cost is acceptable. However, if the game tree79

is highly unbalanced, cores finished early have to wait for cores finished later to merge their results80

for back-propagation, which reduced the hardware utilization. The flattened execution plan adopts81

a Breadth First Search (BFS) to flatten the tree structure into several intervals. As shwon in Fig.1,82

operations inside an interval are naturally paralleled, and it does not introduce any synchronize83

barriers. Thus both the parallelism degree and hardware utilization of the flattened execution plan84

are pretty well. The drawback of the flattened execution plan is its memory consumption. The total85

size of all those intervals is as large as the size of the whole game tree, while the serial and branched86

execution plan only consumes the same amount of memory space as the tree depth.87

3 Operation Aggregation88

In order to solve those drawbacks of existing execution plans, we introduce the operation aggregation89

method. We first introduce two different descriptions of the imperfect information extensive game for90

the following discussion, namely game tree and public tree, and the full definition of extensive game91

are putted in Appendix A. Game tree and public tree are differed by the available information. Game92

tree describe the full game, where each node of the game tree represents a different state of the game.93

Public tree [Johanson et al., 2011] describe the game from the perspective of the audience, which he94

can not distinguish state that only differed by the player’s private actions. Each node in public tree95

corresponds to an infoset that is a collection of all possible states. Fig. 2 illustrate the game tree and96

public tree.97

The operation aggregation consists of two-phase : vectorization and BLAS replacement. The first98

phase, vectorization, is based on the natural intuition that we can traverse the public tree instead of99

traverse the monolithic game tree, thus the scalar operations performed on the game tree is equal to a100

vector operation performed on the public tree. The second phase, BLAS replacement, is to further101

aggregate the vector operations which can be expressed by the dot product or variation into matrix102

operations. Then use BLAS operations to perform those matrix operations.103

In this section we first prove the invariance before and after applying the operation aggregation. Then,104

we discuss the detail of applying our two-phase operation aggregation on Counterfactual Regret105

Minimization (CFR) algorithm.106

3.1 Equivalence Prove107

Here we first make a mild assumption on the statistics we need to solve the extensive games with108

imperfect information.109

3



Assumption 1 (Additive Property). For any infoset I that each history hi ∈ I are not distinguishable110

for player p, the statistics we need satisfy the following equation:111

T (I) =
∑
hi∈I

wiT (hi)

where T (I) is some statistics for I and Ti(hi) are the corresponding statistics for hi.112

Moreover, for any history h, the statistics we need satisfy that113

T (h) =
∑

a∈A(h)

waT ((h, a))

where a is a valid action on infoset I , and Ta is the corresponding statistics for (h, a).114

It’s a natural assumption for hierarchical structures like extensive games and several commonly used115

statistics to solve the imperfect information game follow this assumption, e.g. the reaching probability116

πσ(I) and utility u(σ, I) 3. Under this assumption, we will further show that either traversing the117

monolithic game tree or traversing the public tree will give us the same statistics we want.118

Corollary 1 (Invariance). Under Assumption 1, the statistics we get from traversing and back119

propagate the game tree and public tree will be the same.120

Proof. We proof this corollary with mathematical induction.121

First it’s obvious that for the terminal nodes of public tree, the statistics from both methods are the122

same. Then for the non-terminal node I , if its children holds the invariance property, then with back123

propagation,124

T (I) =
∑

a∈A(I)

waT (I, a) =
∑

a∈A(I)

wa
∑
hi∈I

wiT ((hi, a)) =
∑
hi∈I

wiT (hi).

The second equation holds due to (hi, a) ∈ (I, a), and the last equation holds due to the sum operator125

is exchangeable and our assumption. As the terminal nodes of public tree hold the invariance property,126

all of the nodes in public tree hold the invariance property.127

As the statistics we collect and back propagate in the public tree are always the same, we need only128

traverse the public tree, and enumerate all distinguishable states at the terminal node, then back129

propagate the statistics we need on the public tree, which validates our methods.130

3.2 Two-phase operation aggregation131

In our method, the first-phase, vectorization, aggregates the scalar operations into vector operations132

to exploit the parallel computing power. The second-phase, BLAS replacement, extracts the sharing133

parts from different vector operations, then adopts the BLAS subroutine to replace them.134

Given the invariance property, we aggregate operations to perform efficiently on GPU. Specifically,135

Counterfactual Regret Minimization (CFR) algorithm is used to solve the imperfect information136

extensive game, the pseudo code is presented in Alg.1. We use a small game as the example to137

demonstrate the detail of vectorization, the game tree and public tree is shown in Fig. 2. At the138

beginning of the game, each player gets a private card. The value of the private card is only known to139

the player himself. Then on each round, each player has two valid actions, quit or bid. Quit will end140

the game immediately and lose 1 point, bid will continue the game. Note that, all those actions are141

visible to all players. At the end of the game, whoever has the higher face value of the private card142

wins the game. The winner gets 2 points, and the opponent loses 2 points.143

3.2.1 Vectorization144

The right part of Fig. 2 demonstrate the public tree. The public tree represents the game process in145

the perspective of the audience, who only knows the public actions. Since the private cards of player0146

3Notice that πσ(I) =
∑
hi∈I πσ(hi) and u(σ, I) =

∑
hi∈I πσ(hi)u(σ, hi)

4



B0 B1

A1A0

Quit

BidQuit

Bid

B0 B1

Player0 Player1

Terminal
A0,B0
A1,B0

A0,B1
A1,B1

Public Action
Private Action

Subtree

Figure 2: The game tree and public Tree

and player1 are invisible for the audience, all possible states are indistinguishable for the audience.147

Thus, after each player gets their private cards, each node in the public tree indicates for four states,148

namely the state matrix. And different sub-trees in the game tree are merged into a single sub-tree in149

the public tree.150

After the private card is deal, each node on the public tree maintains the reaching probability and151

counterfactual value matrix instead of a scalar. Be specific, the update of the reaching probability152

for each player is performed by multiply the old value with the strategy for current node. From the153

perspective of player0, he is not able to distinguish states inside same row of the state matrix, so154

his strategy for states in the same row remains the same. It makes it possible to use a single vector155

operation to replace several scalar operations. In the same manner, scalar operations performed in156

line 6 to line 11 in Alg. 1 are all replaced by equivalence vector operations.157

3.2.2 BLAS Replacement158

Based on the vectorization, we further aggregate the vector dot product operations into BLAS matrix159

multiplication. The BLAS are routines that provide standard building blocks for performing the160

fundamental linear algebra operations. Due to the universality of BLAS operations, various hardware161

provides extra computing units to performs the BLAS operations. For example, modern GPU adopts162

the Tensor Core to accelerate those large matrix operations. It is able to perform mixed-precision163

matrix multiply and accumulate calculations in a single operation.164

As shown in Fig. 2, each node in the public tree indicates for a matrix, where each element of165

the matrix is a state. Since each terminal state is mapped to a reward by the utility function, each166

terminal node of the public tree has a utility matrix. In most two player zero sum extensive games,167

for a subgame, all the utility matrix can be decomposed into a scalar multiplied by a symbol matrix168

(assume that positive means player0 wins, and negative means player1 wins). For example, in Fig. 2,169

terminal nodes of the subtree (framed by the dotted line) share a same symbol matrix. Because all170

cards are dealt, nodes in that subtree only differs by the total ante on the table. Thus we have the171

following equation.172

< reaching_prob · utility_matrix >=< reaching_prob · (ante ∗ symbol_matrix) > (1)
=< (reaching_prob ∗ ante) · symbol_matrix > (2)

173

Line 12 and 13 in the Alg.1 perform a dot product between the utility matrix and the reaching174

probability vector, then feed the result to the regret matching subroutine. They can be delayed until175

the entire subtree for the subgame is traversed. Based on Eq. 3.2.2, those delayed vector-matrix176

multiplication can be replaced by a matrix-matrix multiplication, which can ben efficiently processed177

by the BLAS operations.178

4 Evaluation179

In this section, we evaluate the performance of our method by running CFR to solve bluff and180

heads-up flop hold’em poker. We use exploitability to measure the strength of the obtained strategy.181

The exploitability of a strategy is how much utility it will lost when playing with an optimal opponent,182

which is used to measure the strength of a strategy[Johanson et al., 2011]. Our aggregated execution183

plan (running on GPU, namely GPU aggregated) is compared with the serial (CPU serial) and184

flattened (GPU flattened) execution plans.185

5



(a) Bluff : 2 dices 2 faces (b) Bluff : 2 dices 3 faces (c) Bluff : 2 dices 4 faces

(d) Poker : 4 suits 3 cards (e) Poker : 4 suits 4 cards (f) Poker : 4 suits 5 cards

Figure 3: Convergence of different execution plan on different game and size.

The experiment result is shown Fig. 3. In general, the acceleration of GPU version over CPU version186

increases as game size becomes larger. On small scale games, like 2 dices and 2 faces of the bluff187

game, CPU serial version performs best. The reason is that the kernel launch will lead to extra time188

consuming and the clock speed of the GPU is much lower than the clock speed of the CPU.189

As the game grows in size, the number of states in each node of the public tree is getting bigger.190

Operations on those states can be performed in parallel on the GPU. The execution plan who has191

higher parallelism, e.g. the GPU flattened and GPU aggregated, runs much faster than the CPU serial.192

However, the GPU flattened execution plan needs to expand the entire game tree before traverse193

it, which consumes too much memory space. Thus, it failed on the heads-up flop hold’em poker194

when the game size is bigger than 4 suits 3 card. GPU aggregated obtains additional performance195

acceleration by the BLAS replacement, so it consumes less time then the GPU flatten.196

Serial Flattened Aggregation Speedup
2 dices 2 numbers 0.00038 0.00090 0.00138 0.27
2 dices 3 numbers 0.00487 0.00374 0.00414 1.17
2 dices 4 numbers 0.13489 0.03229 0.04663 2.89
4 suits 3 cards 0.427 0.061 0.044 9.7
4 suits 4 cards 2.369 - 0.165 14.35
4 suits 5 cards 15.151 - 0.481 31.49

Table 1: The running time (in seconds) and the speedup of aggregated to serial. All measured in a
single round.

5 Conclusion and Future Work197

In this paper, we show that those naturally un-paralleled tasks, e.g. solving extensive game, can be198

executed in parallel on GPU by operation aggregation. We propose a novel two-phase aggregation199

procedure which is based on the algorithm’s computation pattern and the operations character. Thus200

this procedure is independent with the implementation and transparent to algorithm researchers.201

The experiment result shown that after the operation aggregation, the algorithm runs tens of times202

faster than before. And as the size of the game continues to increase, there is room for further203

improvement in the speedup. Future work will focus on combining this operation aggregation204

procedure with modern CFR variants to further improve the efficiency, while extend this work to205

real-world large-scale applications.206

6



References207

Noam Brown and Tuomas Sandholm. Libratus: the superhuman ai for no-limit poker. In Proceedings208

of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017.209

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats top210

professionals. Science, page eaao1733, 2017.211

Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret mini-212

mization. arXiv preprint arXiv:1811.00164, 2018.213

Michael Johanson, Kevin Waugh, Michael Bowling, and Martin Zinkevich. Accelerating best214

response calculation in large extensive games. In Twenty-Second International Joint Conference215

on Artificial Intelligence, 2011.216

Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor217

Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial218

intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.219

Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994.220

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,221

Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering222

the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.223

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,224

Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without225

human knowledge. Nature, 550(7676):354, 2017.226

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization227

in games with incomplete information. In Advances in neural information processing systems,228

pages 1729–1736, 2008.229

7



A Definition and Notation230

We present the extensive game and Counterfactual Regret Minimization algorithm to introduce231

concepts and notations used in our paper.232

A.1 Extensive Games with Imperfect Information233

Extensive game is a standard framework to describe the sequential decision-making problem with234

multiple agents. We here firstly define an extensive game formally, introducing the notation we use235

throughout the paper.236

Formally, an extensive game has the following components [Osborne and Rubinstein, 1994]: a237

finite player set N ; a chance player c. Chance player is introduced to handle the uncertainty in the238

environment; a finite set H of sequence, each member of H is a history, which is an action sequence239

taken by the players (including chance player), A(h) = {a : (h, a) ∈ H} are the available actions240

after a non-terminal history. The empty sequence is in H and every prefix of a non-empty sequence241

in H is also in H. Z ⊆ H denote the terminal history set, each of its elements is not a prefix of any242

other sequences; a function P that assigns to each non-terminal history (each member of H \ Z) a243

member of N ∪ {c}. P is the player function, P (h) being the player who takes an action after the244

history h. If P (h) = c then chance player determines the action taken after the history h; the utility245

functions ui for each player i ∈ N that mapping the terminal states Z to R.246

Notice that extensive games can be represented with the tree structure due to the hierarchical nature247

of history set H . Each node on the this tree, namely a state s, corresponds to a history h 4, and each248

edge starts from a certain node represents for a valid action under the corresponding state. In this249

paper, we use the term game tree to denote such tree structure.250

In an extensive game, players select the action with their strategy i.e. a probability simplex over251

available actions given their private information. Formally, a strategy of player i is a function σi252

which assigns h a distribution over A(h) if P (h) = i. A strategy profile σ consists of the strategy for253

each player, i.e. σ1, · · · , σN . We’ll use σ−i to denote all the strategies except σi.254

In games with imperfect information, actions of other players are partially observable to a player255

i ∈ [N ]. So for player i, the game tree can be partitioned into disjoint infosets, Ii. That is, two256

histories h, h′ ∈ I ∈ Ii are not distinguishable to player i. Thus, σi should assign the same257

distribution over actions to all histories in an infoset I ∈ Ii. So that, with little abuse of notations,258

we let σi(I) denote the strategy of player i on infoset I ∈ Ii.259

For better understanding of infoset, here we introduce an intuitive example that, in Poker games, each260

player is only able to see his own private cards and all played public cards, while the private card of261

the opponent player is invisible to him. Thus the player can only make decision with his private card262

and all played public cards.263

Moreover, let πσ(h) denote the probability of arriving at a history h if the players take actions264

according to strategy σ. Obviously, we can decompose πσ(h) into the product of each player’s265

contribution, i.e., πσ(h) =
∏

[N ]∪{c} π
i
σ(h). Similarly, we can define πσ(I) =

∑
h∈I πσ(h) as the266

probability of arriving at an infoset I and πiσ(I) denote the corresponding contribution of player i.267

Let π−iσ (h), π−iσ (I) denote the product of the contributions of all players except player i.268

A.2 Counterfactual Regret Minimization269

Counterfactual regret minimization (CFR) is now the state-of-the-art algorithm for solving extensive270

games with imperfect information. We first introduce the concept of regret for player i, which is271

defined as:272

RiT := max
σi

RiT (σi) :=

T∑
t=1

ui(σi, σ−it )−
T∑
t=1

ui(σit, σ
−i
t )

Counterfactual regret minimization works based on the observation that, the time-averaged strategy273

σ̄iT (I) =
∑
t π

i
σt

(I)σit(I)∑
t π

i
σt

(I) achieves ε-NE if 1
TR

i
T < ε

2 , which is the objective of solving extensive274

4Unless otherwise specified, the term state denotes the node on the game tree in this paper.

8



games. Directly apply regret minimization algorithms need to deal with trajectories, which is275

exponential in state number. [Zinkevich et al., 2008] bounded the original regret by the summation of276

immediate regret:277

RiT <
1

T

∑
t

∑
I∈Ii

π−iσt (I)(ui(σt|I→σ(I), I)− ui(σt, I)),

where σt|I→σ(I) is the strategy which selects action according to σ at infoset I and according to278

σt at other infoset. Then CFR use a standard regret minimization algorithm called regret matching279

to minimize this upper bound. Notice that to calculate the counterfactual regret and apply regret280

matching, we need to traverse the whole game tree, which is still time-consuming and hard to execute281

in parallel.282

9


	Introduction
	Execution Analysis
	Operation Aggregation
	Equivalence Prove
	Two-phase operation aggregation
	Vectorization
	BLAS Replacement


	Evaluation
	Conclusion and Future Work
	Definition and Notation
	Extensive Games with Imperfect Information
	Counterfactual Regret Minimization


