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Abstract

Despite the rapid advancements in the field of unsupervised domain adaptation
(uDA), there remains a wide gap between algorithmic solutions and their manifes-
tation in real-world ML systems. In this paper, we – for the first time – explore
the challenges associated with privacy, distributed datasets and communication
costs when uDA algorithms are deployed in practice. We propose and evaluate a
novel distributed and asynchronous algorithm for domain adaptation which can
alleviate several of the aforementioned practical challenges and pave the way for
wider adoption of these algorithms in practical applications.

1 Introduction

A fundamental assumption that drives the performance of supervised learning algorithms is that
training and testing samples are drawn from the same data distribution. However, in practical
scenarios, this assumption is often violated due to variations in data acquisition processes between
the training (or source) and testing (or target) domains – caused by for example, different illumination
conditions and cameras in the context of visual tasks. This shift in data distributions, known
as domain shift, is a core reason which hinders the generalizability of predictive models to new
domains. As manual labeling of data in each target domain is prohibitively expensive, unsupervised
domain adaptation (uDA) has emerged as a promising solution to transfer the knowledge from a
labeled source domain to unlabeled target domains. A number of methods have been proposed for
uDA [1, 2, 3, 4, 5]. In particular, adversarial training approaches have shown significant promise in
learning representations which are domain-invariant and can provide more effective transfer from
source to target domain [6, 7, 5, 8].

While existing methods have focused on improving the accuracy of target classifier after adaptation,
little attention has been paid to the incorporation of these domain adaptation methods in real-world
machine learning systems. These methods assume that both source and target domain data are
available on the same machine in order to conduct the joint adaption training, which is not always the
case in reality. As a motivating example, consider a medical application scenario wherein a model is
trained for the task of fetal head detection from labeled ultrasound images collected in a hospital in
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Finland (source domain Sfin). Subsequently, this model has to be deployed in two target hospitals:
one in the USA (Tusa) and one in China (Tchi). Due to variations in sonogram machines and medical
training of sonographers, a domain shift is likely to occur in the test samples; hence warranting the
need for uDA. Existing uDA methods require the raw source and target data to be available on the
same node. Clearly, this raises severe privacy and legal concerns since either the source domain
or the target domains will have to send their sonograms to each other in order to perform uDA. In
addition, such transfer of data also incurs severe communication costs. In summary, despite the rapid
advancements in uDA algorithms, existing methods are not designed to solve practical challenges of
distributed data, privacy and communication costs in real-world systems.

Given the gap between the latest domain adaption techniques and distributed learning systems, we
consider the distributed setting for unsupervised domain adaption where the labeled source data
and unlabeled target data are stored separately within two computational nodes. We explore how to
develop distributed adversarial domain adaption methods without sharing the domain data between
nodes. The key contributions of this paper are:

• We propose a novel distributed and asynchronous domain adaptation algorithm which divides the
model architecture of an adversarial network across different compute nodes.

• We propose a new training strategy for this distributed architecture which does not exchange any
raw data or feature representations across nodes. Instead, we propose accumulating and periodic
averaging of the discriminator gradients as a way to synchronize the training process across nodes.

• We evaluate our methods on three benchmark uDA tasks and show that it outperforms several
distributed training baselines.

2 Related Work

In our paper, the training data from two domains is distributed in two separate nodes, which relates our
problem to distributed learning algorithms. Parameter Server [9] is a common strategy for distributed
learning which coordinates the gradients of all nodes to update the model in a centralized way. Lian
[10] proposed a decentralized learning system, in which each node conducts model averaging with
only connected neighbors. Besides, in order to save communication costs, a number of asynchronous
algorithms have been proposed [11, 12]. Compared with previous works, this paper explores the
distributed domain adaption scenario, which, to the best of our knowledge, has not been studied
before. It is a special case in the sense that training data split across the two nodes is biased, i.e., data
in each node belongs to one domain. Moreover, it is unclear from past works how to distribute the
adversarial training model across nodes.

3 Technique

In this section, we present our proposed approach of distributed asynchronous domain adaptation.

3.1 Preliminary

We tackle the problem space of unsupervised domain adaption (uDA). In uDA, the training data
consists of a labeled source dataset Ss = {(xs, ys)} drawn from a source domain Xs and an unlabeled
target dataset St = {(xt)} drawn from a target domain Xt, with no labeled observations. Because
direct supervised learning is not possible on the target dataset, uDA methods aim to adapt a source
model for use in the target domain.

Our solution is focused on Representation-level Adversarial Domain Adaption (RADA), a class of
uDA methods that have achieved many exciting results recently [7, 5, 6, 13]. The core intuition in
RADA is to use adversarial learning to align the feature representations of the source and target
domains, thereby allowing a source classifier to be used in the target domain. Broadly, there are
three components in RADA and its variants: a feature extractor E, a task classifier C and a domain
discriminator D. E takes training instances as input and generates feature representations for them,
which sequentially are passed as input to C and D. The classifier C conducts the task classification
while D aims to differentiate the two domains based on their feature representations. The goal of
domain adaptation is to learn a E and a C that result in low target error Et:
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Et(E,C) = Pr
(x,y)∼Xt

[C(E(x)) 6= y] (1)

Two losses are optimized during the training process: classification loss Lcla and adversarial loss
Ladv. The former one refers to the supervised task classification loss over the source dataset. The
latter one represents the domain discrimination loss over source and target data – this is computed by
assigning 0 and 1 as domain labels for source and target domains respectively. The two losses can be
formalized as follows: (note L is the loss function)

Lcla =
∑

(xs,ys)∼Ss

L(C(E(xs)), ys) (2)

Ladv =
∑
xs∼Ss

L(D(E(xs)), 0) +
∑
xt∼St

L(D(E(xt)), 1) (3)

Given Lcla and Ladv , the adversarial domain adaption training is a minimax game. Feature extractor
E is trained to minimize Lcla and maximize Ladv at the same time, because it is supposed to learn
the representation that is informative enough for classification but domain-invariant for D. Whereas,
domain discriminator D tries to minimize Ladv such that it can still differentiate the representations
of the two domains. Task classifier C is updated to minimize Lcla. The optimization problems can
be stated as:

min
E,C

Lcla,min
D

Ladv,max
E

Ladv. (4)

3.2 Distributed Domain Adaption

As discussed above, the training process of RADA methods follows the "one model, two data flows"
paradigm, that is it requires both source and target datasets to be on the same node in order for the
adaptation to work. Recall that our goal is to come up with a system design that allows domain
adaptation to work without exchanging source and target datasets or their features representations, in
order to make it practical from a privacy and data communication perspective. As source and target
datasets reside at separate nodes in our setting, a logical option would be to split the model across the
nodes. In vanilla RADA as shown in Figure 1(a), the three model components E, C and D are shared
by both domains and reside on the same node. Prior works such as ADDA [7] shown in Figure 1(b)
proposed to use different feature extractors for the source and target domains, however they still use a
shared domain discriminator, which makes them impractical for our problem.

(a) Vanilla uDA with centralized
architecture.

(b) Untied feature extractors with
a shared discriminator.

(c) Fully distributed architecture
for uDA

Figure 1: Network architectures for Adversarial Domain Adaptation.

We propose a fully distributed architecture for adversarial domain adaption. As shown in Figure 1(c),
E, C and D are split into source components (Es, Cs, Ds) and target components (Et, Ct, Dt)
respectively. Source data and target data can therefore be fed separately into their own model
components, thus preventing any exchange of raw data or feature representations across nodes. Under
this architecture, the most straight-forward training strategy is to aggregate the gradients of two
discriminators for every step. From an adaptation perspective, this is equivalent to the centralized
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Algorithm 1 DADA (Source Node)
1: Input: Es and Cs, which are pre-trained on source dataset

Ss; randomly initialized Ds; sync-up step p; number of total
stepsN

2: for n = 1, 2, ..., N do
3: Randomly sample a batch ξ(n)

s from source dataset Ss

4: Feed ξ(n)
s to Es and Ds, get adversarial loss Ls

adv =

L(Ds(Es(ξ
(n)
s )), 0).

5: Calculate gradients overDs: g(n)(Ds;Ls
adv)

6: Add g(n)(Ds;Ls
adv) to the accumulated gradients

bufferGs
acc

7: if n%p == 0 then
Exchange Gs

acc with target node, average the accumu-
lated gradients , then updateDs and clear bufferGs

acc.
8: end if
9: end for

Algorithm 2 DADA (Target Node)
1: Input: Et, Ct and Dt, which are all initialized by source node;

sync-up step p; number of total stepsN
2: for n = 1,2,...,N do
3: Randomly sample a batch ξ(n)

t from target dataset St

4: Feed ξ(n)
t to Et and Dt, get adversarial loss Lt

adv =

L(Dt(Et(ξ
(n)
t )), 1).

5: Calculate gradients over Et and Dt: g(n)(Et;Lt
adv) and

g(n)(Dt;Lt
adv)

6: UpdateEt by g(n)(Et;Lt
adv)

7: Add g(n)(Dt;Lt
adv) to the accumulated gradients buffer

Gt
acc

8: if n%p == 0 then
Exchange Gt

acc with source node, average the accumu-
lated gradients, then updateDt and clear bufferGt

acc.
9: end if

10: end for

uDA methods such as ADDA [7] where Es and Et are trained sequentially by source and target
data, and only D is trained jointly by two domains. Even though we distribute the discriminator
training across nodes, by averaging the discriminator gradients after each step, we ensure that the
two discriminators are always synchronized, thereby this method obtains similar levels of adaptation
performance as centralized training. Please refer to § 4 for the empirical findings that justify this
approach. Besides, it is worth mentioning that most existing distributed training methods [9, 10, 14]
are not applicable in this setting because the domain label spaces across the nodes are completely
disjoint (i.e. source node has only samples from class 0 and target node has samples only from class
1).

While this approach of synchronously updating the discriminators can guarantee the statistical
accuracy for the proposed distributed domain adaption, it does require gradients exchange between
nodes after every single training step, which in turn can lead to significant communication costs
over long training processes. In the next section, we relax the synchronization constraint, i.e., we
propose that source and target nodes exchange discriminator gradients after every n steps, thereby
significantly reducing the communication costs at the expense of minimal accuracy loss.

3.3 Distributed Asynchronous Domain Adaption

The communication content between source and target nodes are gradients of Ds and Dt. Note that
the target extractor Et is always updated for every step regardless of the communication pattern of
discriminators. In the synchronous case, Ds and Dt are always identical because they are initialized
with the same weights and updated with same averaged gradients after every step. For asynchronous
gradient exchange, we explore three strategies that are summarized in Table 1.

Table 1: Summary of the three asynchronous strategies studied in this paper.
In Local Step In Sync-up Step Expected

Divergence
between Ds

and Dt

Naive Apply local gradients to
Ds and Dt

Average weights of Ds

and Dt

High

Moving Average (MA) Apply local gradients to
Ds and Dt, then do
average with Dsync

Average weights of Ds

and Dt, store the
averaged model Dsync

Low

Gradient Accumulating
(GA)

Accumulate the
gradients of Ds and Dt

Average accumulated
gradients and apply it to

Ds and Dt

None

We refer to the training step at which the gradient synchronization takes place as the Sync-up Step
while the other steps during which both nodes are computing the gradients locally are called Local
Steps. In the Naïve method – during the local steps, both Ds and Dt are updated based on the gradients
computed over their local datasets. In the sync-up step, the weights of the two discriminators are
exchanged and averaged as a way to synchronize them. As we mentioned before, since the label
spaces of the two discriminators are completely disjoint, it is likely that averaging models trained on
such biased data will degrade the discriminator performance.
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Structure Sync. Sync Step Method 0 → 60 0 → 120 0 → 180 0 → 240 0 → 300 Avg
Centralized - - - 69.86 29.89 59.95 49.58 38.2 49.496

Distributed Sync - - 69.84 29.42 59.12 49.45 38.40 49.246

Naive 45.98 24.95 45.43 38.15 31.67 37.236
Distributed Async 2 MA 65.29 29.86 56.58 38.13 38.01 45.574

GA 68.73 29.39 59.82 48.12 37.25 48.652
Naive 50.86 23.86 41.09 26.39 29.48 34.336

Distributed Async 3 MA 49.77 27.0 47.20 27.81 38.10 37.976
GA 68.43 29.82 59.70 45.34 38.56 48.37

Naive 33.17 22.71 40.02 20.67 22.96 27.906
Distributed Async 4 MA 46.21 21.27 44.95 24.61 33.30 34.068

GA 68.29 29.31 59.40 41.81 37.95 47.352

Table 2: Target Domain Accuracy (%) for various distributed and asynchronous approaches for
Rotated MNIST

Structure Sync. Sync Step Method A → W W → D D → W Avg M → U U → M S → M Avg
Centralized - - - 77.61 98.18 92.45 89.39 90.95 95.51 69.61 85.35

Distributed Sync - - 77.23 98.0 92.01 89.08 90.73 95.59 69.55 85.29

Naive 76.60 97.38 89.05 87.67 65.4 71.32 55.65 64.12
Distributed Async 2 MA 76.47 96.58 89.18 87.41 69.0 70.5 57.1 65.53

GA 76.35 97.8 90.94 88.36 91.22 95.31 67.87 84.8
Naive 75.84 96.38 87.5 86.57 62.1 70.44 54.46 62.33

Distributed Async 3 MA 76.72 96.78 88.67 87.39 67.1 70.32 57.1 64.84
GA 77.10 97.18 90.56 88.28 90.81 79.62 67.1 79.17

Naive 75.47 94.77 87.16 85.8 62.0 70.34 54.63 62.32
Distributed Async 4 MA 76.35 96.98 88.55 87.29 66.23 69.3 55.25 63.59

GA 76.85 97.03 89.05 87.64 90.31 75.35 65.39 77.01

Table 3: Target Domain Accuracy (%) for distributed and asynchronous approaches for Office-31 and
Digits adaptation tasks.

To mitigate the effects of biased gradients, we use the Moving Average method which aims to
minimize the divergence between the two discriminators in the local steps. The key idea is to store a
copy of the last synchronized discriminator (called Dsync) from the previous Sync-up step and after
each local update of the discriminators, average the weights of the local discriminators with weights
of Dsync. This technique prevents the weights of the two discriminators from diverging significantly
from the last synchronized model.

Finally, we propose Gradient Accumulation as a simple but effective method to ensure there is no
divergence between the discriminators, and at the same time we are able to benefit from asynchronous
training. As the consistency of Ds and Dt are crucial for the adversarial training, we do not update
discriminators with local biased gradients. Instead, we only accumulate the gradients during the local
steps. In the sync-up step, both nodes exchange the accumulated gradients, average them and apply
them to update the discriminators. The target extractor Et is always updated for every step. Our
experiment results in § 4 show that the Gradient Accumulation method provides the best adaptation
performance as the asynchronicity of the system increases.

Combining the distributed training with the Gradient Accumulation technique, we propose a dis-
tributed asynchronous domain adaption (DADA) algorithm, which is summarized in Algorithm 1 and
2. In these algorithms, p = 1 corresponds to the synchronous distributed training discussed in §3.1.

4 Evaluation

This section reports on the experimental validation of our approach on multiple image datasets.

Datasets. We conduct experiments on three widely used uDA datasets: Rotated MNIST, Digits, and
Office-31. Rotated MNIST is a variant of the MNIST [15] dataset wherein the numbers are rotated
from 0°to 300°at increments of 60°. Each rotation is considered as a separate domain and hence
we have 6 domains in total (0°, 60°, 120°, . . . , 300°). The Digits adaptation task has three domains:
MNIST [15], USPS, and SVHN [16] and each domain consists of 10 digit classes ranging from 0-9.
Finally, the Office-31 dataset contains images of everyday office objects from 31 classes, but collected
from different sources: Amazon (2817 images), DSLR camera (498 images) and a Web camera (795
images). We refer to these domains as A, D and W respectively.

Experiment Setup. We follow the same evaluation procedure as earlier uDA works [5, 7] wherein
all training instances are used for adaptation and the adapted model is evaluated on the target test
data. We choose three adaptation tasks each for the Digits and Office-31 datasets as shown in Table 3.
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(b) Digits (USPS→MNIST)
Figure 2: Comparison of target domain accuracy across centralized and distributed training methods.
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(c) Office-31 (A→W)

Figure 3: Communication Cost across different methods.
For the rotated MNIST dataset, without loss of generality, we assume 0°as the labeled source domain
and remaining 5 rotations as target domains, leading to a total of 5 adaptation tasks.

Results. In Figure 2, we plot the target domain accuracy with the number of training steps, and
compare our approach (without adding asynchronization) against a centralized baseline (ADDA [7])
and a state-of-the-art decentralized training algorithm D-PSGD [10]. D-PSGD is proposed to conduct
decentralized training among multiple nodes by averaging the model only between the connected
neighbors. Here there are only two nodes, therefore we apply the model averaging strategy of D-
PSGD between source and target discriminators. The results clearly demonstrate that our distributed
training approach (without asynchronization) can achieve similar target accuracy as the centralized
baseline, and moreover it outperforms D-PSGD on all datasets.

Next, we evaluate our proposed approach of gradient-accumulation based asynchronization against a
number of baseline techniques. Tables 2 and 3 show the target domain accuracy post-adaptation,
comparing the centralized ADDA method against our distributed technique as we vary the number
of sync-up steps from 1 to 4. Sync up step of 1 corresponds to the fully synchronized training. For
Rotated MNIST, we observe that the Gradient Accumulation approach provides comparable accuracy
to fully synchronous training, and also outperforms the other async baselines. Similar results are
obtained for the Digits and Office-31 datasets.

Finally, we evaluate the total communication cost in various training strategies. As discussed before,
the primary communication overhead in our proposed solution is the exchange of discriminator
gradients at the sync-up step. We calculate the total data transfer over the entire training process
and report it in Figure 3. It is observed that as the sync-up step (k) increases (on the x-axis), the
communication cost goes down with minimal drop in target domain accuracy. It is also worth
highlighting that in our experiments, we did not have very large-scale datasets that are expected in
real-world. Existing domain adaptation algorithms require data exchange, hence their communication
cost will scale with dataset size, however our communication costs are dependent on the size of the
discriminator and hence largely independent of the dataset size.

5 Conclusion
In this paper, we presented the challenges of deploying uDA algorithms in practice. We proposed
a distributed and asynchronized algorithm which allows for privacy-preserving uDA on distributed
datasets. As this is an early work, we did not perform extensive hyper-parameter search, which
might have improved the performance. We hope to get feedback on this idea from fellow workshop
attendees, which will help us in making the paper stronger.

Finally, our method provides user privacy by only shares the gradients of the domain discriminators
between nodes. The raw data from both domains as well as its corresponding gradients from the
feature extractor are completely never shared between nodes. While no prior work has shown that
discriminator gradients can leak raw data, we do not discount the possibility that privacy attacks
could be developed in the future. We leave a detailed privacy study of our method as a future work.
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