
PyTorchPipe: a framework for rapid prototyping of
pipelines combining language and vision

Tomasz Kornuta∗

IBM Research AI
Almaden Research Center

San Jose, CA 15120
tkornuta@gmail.com

Abstract

Access to vast amounts of data along with affordable computational power stim-
ulated the reincarnation of neural networks. The progress could not be achieved
without adequate software tools, lowering the entry bar for the next generations of
researchers and developers. The paper introduces PyTorchPipe (PTP), a framework
built on top of PyTorch. Answering the recent needs and trends in machine learning,
PTP facilitates building and training of complex, multi-modal models combining
language and vision (but is not limited to those two modalities). At its core, PTP
employs a component-oriented approach and relies on the concept of a pipeline,
defined as a directed acyclic graph of loosely coupled components. A user defines
a pipeline using yaml-based (thus human-readable) configuration files, whereas
PTP provides generic workers for their loading, training, and testing using all the
computational power (CPUs and GPUs) that is available to him. The paper covers
the main concepts of PyTorchPipe, discusses its key features and briefly presents
the currently implemented tasks, models and components.

1 Introduction

Deep learning [LBH15] enabled impressive improvement in performance across many problem
domains, and neural network based models became dominating solutions, achieving state of the
art performances, e.g., in speech recognition [GMH13], image classification [KSH12], object de-
tection [RDGF16], instance segmentation [HGDG17], question answering [WCB14] or machine
translation [BCB14]. This would not be possible without (1) access to large-scale datasets, (2)
harnessing the computational power and parallel processing of GPUs and (3) the appropriate software.
Starting from low-level libraries such as CUDA [SK10], the AI community has been developing tools
and libraries offering more and more levels of abstractions above the multiply–accumulate opera-
tions and elementary tensor algebra, e.g. Torch [CBM02], Theano [BLP+12], Chainer [TOHC15]
or TensorFlow [ABC+16]. Those API based tools facilitate building and training of deeper and
more complex neural models and significantly lower the entry bar for new users and researchers.
As the community started to shift towards multi-problem suites such as MS COCO [LMB+14],
being a large-scale object detection, segmentation, and captioning dataset, or ParlAI [MFF+17]
and AllenNLP [GGN+17], offering wide varieties of linguistic tasks, researchers started to feel the
need for more specialized APIs that will enable comparison of different models under exactly the
same settings and target the so-called reproducibility crisis [Hut18], with examples being object
detection APIs such as Detectron [GRG+18] for PyTorch [PGC+17] or object detection API in
TensorFlow [HRS+17]. The need for more abstraction from both problem domain (dataset) and
model specialized for a given domain led to development of the next generation of tools, such as
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Tensor2Tensor [VBB+18], MI-Prometheus [KMM+18], Pytia [SNJ+18], OpenSeq2Seq [KGG+18],
NeMo [KLN+19] or Ludwig [Mol19]. Aside of the mentioned modularity and abstraction, all those
tools offer powerful scripts, agnostic to dataset and model, that standardize training (and testing)
procedures, once again lowering the entry bar and enabling the user to focus more on the model
rather than on the training loop, validation procedures, utilization of GPUs etc.

Figure 1: Exemplary multi-modal flow diagram. In PTP each block is implemented as a separate
component, whereas framework handles passing data between them and controls the execution order.

As the individual problem domains matured and saturated with diverse solutions, a new strong
trend called Multi-Modal Machine Learning [BAM18] emerged, with tasks combining vision and
language [MKK19] such as Image Captioning [KFF15] and Image/Visual Question Answering
(VQA) [MF14, AAL+15] becoming slightly more popular than the others. A clearly different
nature of those two modalities (spatial vs sequential) implies diverse transformation that the inputs
need to undergo, e.g. convolutional layers in the case of images and tokenization, indexing, word
embeddings etc. in the case of questions. As a result, the most general VQA architecture consists
of four major modules: two encoders responsible for encoding of raw image and question into
more useful representations, a reasoning module that combines them and decoder that produces
the answer. In early VQA systems, reasoning modules implemented diverse multi-modal fusion
mechanisms [MD18], from concatenation to pooling, e.g. MCB [FPY+16] and MLB [KOL+17], to
diverse (co-)attention mechanisms, e.g. question-driven attention over image features [KE17]. More
recently, researchers have focused on reasoning mechanisms such as Relational Networks [SRB+17,
DCK18] and Memory, Attention and Composition (MAC) networks [HM18, MJA+18]. Still, they all
can fit into the architectural pattern defined above. Similarly, one can assume adequate architectural
patterns for Image Captioning or any other task, e.g. Visual Dialog [DKG+17] or Visual Image
Generation [MKK19]. Such assumptions enable development of software facilitating their creation,
for example, OpenSeq2Seq assumes model to follow the Encoder(s)-Decoder architecture, Ludwig
imposes it to be composed of Encoder(s)-(Combiner)-Decoder, whereas Pytia assumes that user will
create a monolithic model, but instead standardizes interfaces by enforcing that batches fetched by all
datasets (Tasks) would have exactly the same signature consisting of (image, context, text, output).

However, in practice, some additional computations that need to be done. When looking at an
exemplary VQA system presented in Fig. 1, one might notice that answers also undergo some
transformations (from words to indices/one-hot encoding) and aside of loss there are some additional
modules calculating statistics. Besides, for the test split the answers are typically not provided. Hence
some of the modules should not be executed at all when working with that split. Finally, it is a
common practice [JNC+18, TAHvdH18] to use transfer learning [PY09] and incorporate into the
model image encoders and/or word embeddings pre-trained a priori on external datasets. Moreover,
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typical approach during training is to freeze the encoder(s) weights at first (which enables faster
training), but at the end to unfreeze them and fine-tune the whole model jointly (which gives a slight
accuracy boost). Those observations lead to relaxation of assumptions regarding utilization of fixed
architectural patterns and formulated the requirement for flexible decomposition of models into
smaller modules that laid the core foundation for PyTorchPipe.

2 PyTorchPipe

PyTorchPipe (PTP)2, being the main contribution of this paper, is a software framework build on top of
PyTorch [PGC+17]. PTP is a component-oriented framework that facilitates development and rapid
prototyping of computational multi-modal pipelines and comparison of diverse neural network-based
models. The most important feature of PTP is the decomposition of complex "monolithic" models
into graphs with many inter-connected computational nodes, that increases their reusability while
still enabling their joint training. As a consequence, PyTorchPipe enables:

• Plugging in/out “modules” (components) at run-time3,

• Importing the pre-trained models (or their “parts”) and saving them during/after training,

• Freezing/unfreezing of the models (or their “parts”) on demand (at run-time),

• Run-time parametrization of all “modules”,

• Pipeline-agnostic, generic scripts for training and testing, enabling run-time parametrization
(hyper-parameters) and utilization of many CPUs/GPUs on-demand.

Additionally, PTP offers several other functionalities useful for rapid prototyping and training of
new models, such as: different optimizers, sampling methods, automated logging and statistics
collection facilities, the export of statistics to files (and TensorBoard) and automated saving of the
best performing pipelines/models during training. Moreover, PTP provides out-of-a-box library of
diverse, parameterizable components that can be used for rapid creation of various prototypes.

Figure 2: Architecture of the PyTorchPipe framework.

From the architectural point of view, PTP can be seen as a stack of layers, as presented in Fig. 2. The
two bottom layers are external libraries that PTP and its components depend on. The Framework
Core layer contains all the tools and utilities realizing core functionalities, i.e. loading configuration
files into registry, managing registry and global parameters, building the pipeline based on loaded
configuration, component factories, loggers, statistics collectors and aggregators. Workers later use
those for building and deploying the actual pipelines and execution of experiments. The Components
layer contains the implementations of components along with their default configurations that are

2https://github.com/ibm/pytorchpipe
3Run-time is defined here as the moment of execution of the experiment.
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loaded and managed by the workers. Finally, the Experiments layer contains files associated with a
given experiment that the user wants to perform, staring from the configuration file(s), all the logs and
statistic collected and saved to files during experiment execution, files associated with a given dataset,
loaded and saved checkpoint(s) with weights of the models incorporated in the pipeline etc. Please
note that the layer architecture reflects three types of user roles classified by their expertise, from top:

• Experiment runners might have little to no knowledge of the underlying models, training
procedures, methods (backpropagation) etc. but are able to define experiment by writing
configuration file(s) incorporating the existing components and relying on existing workers4.

• Component developers must understand how a given model works, however, do not need to
understand every aspect of the training/testing procedures nor how PTP operates internally.

• Worker developers must understand both how models and training/testing work, as well as
be familiar with internal operation of PTP core, how pipelines are assembled etc.

2.1 Pipelines

What the previously mentioned tools typically define as a Model, in PTP is framed as a Pipeline:
a directed acyclic graph (DAG) consisting of many inter-connected components. The components
are loosely coupled and care only about the Input Streams they read from and Output Streams
they publish to. There are three special classes of components: Task, Model and Loss. Tasks
are components feeding batches of samples into pipelines, and due to the training methodologies
that interlace training and validation batches there are treated is a slightly different way, thus are
in fact outside of pipeline. Models are components containing trainable weights, whereas Losses
are components calculating values of loss function for a given batch (and from which gradients are
back-propagated). Once the components are implemented, a user defines a pipeline by writing a
configuration file (Fig. 3). Components are executed following the priorities defined by the user. A
pipeline can consist of any number of components of a given type, including many Models and many
Losses (what enables e.g. Multi-Task Learning [Car97]) and other components providing required
transformations and computations. The user connects the components by explicitly indicating the data
streams connections; Naming Facilities play an important role here, enabling one to rename any stream
at the run time, without the need to change the component code. The framework offers full flexibility
and it is up to the programmer to choose the granularity of his/her components/models/pipelines.

training:
task:

type: task_type1
streams:

output1: data_stream_x
output2: data_stream_y

pipeline:
component_b:

priority: 2
type: model_type2
streams:

input: data_stream_y
output: data_stream_z

component_c:
priority: 3
type: loss_type3
streams:

input1: data_stream_x
input2: data_stream_z

Figure 3: Exemplary pipeline (left) with its YAML definition (right).

2.2 Components

All components have two basic operation modes: Initialization and Execution (Fig. 4), that also
reflect two main modes of PTP workers. During Initialization workers load configuration file(s)
and create all instances of the components in the pipeline. Each component receives its subsection

4Also note that all PTP components and workers come with default configuration files, so one does not have
to look at the actual implementation when defining its own experiment.
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of configuration file and uses it to set its internal variables, rename stream/global names, get/set
global variables, and perform other component-specific operations (load dataset/create nn module
etc.). As soon as all components are initialized the worker performs handshaking, i.e. makes sure
that all streams are correctly connected by checking compatibility of their output-input definitions.
Initialization happens only once and when finished, workers switch to Execution mode. During
Execution a worker activates components one by one, according to their priorities. Each component
processes data from input streams and publishes results to output streams, logs its operation, collects
statistics (automatically exported to CSV files and, optionally, to Tensorboard) etc.

2.3 Workers

Figure 4: Component operation modes.

PTP workers are python scripts that are agnos-
tic to tasks/models/components/pipelines that
they are supposed to work with. Currently our
framework offers three types of workers:

• ptp-offline-trainer: a trainer relying
on classical methodology interlacing
training and validation at the end of ev-
ery epoch; creates separate instances
of training and validation tasks and
trains the models by feeding the cre-
ated pipeline with batches of data.

• ptp-online-trainer: a flexible trainer
creating separate instances of training
and validation tasks; validation is per-
formed using a single batch every user-
defined interval; relying on the notion
of an episode rather than epoch.

• ptp-processor: performing a single
pass over all the samples (batches) re-
turned by a given task; useful for col-
lecting scores on test sets, answers for
submissions for competitions etc.

In its core, to accelerate the computations on their own, PTP relies on PyTorch and all workers
extensively use its mechanisms for distribution of computations on CPUs/GPUs, including multi-
process data loaders and multi-GPU data parallelism. The Tasks, Models and other components
are agnostic to those operations and the user indicates whether to use the former (data loaders) in
configuration files or the latter (GPUs) by passing an adequate argument (–gpu) at run-time.

2.4 Task/Model/Component Zoo

PTP is generally agnostic to operations performed by the components and data passed in data streams.
However, the currently provided tasks, models and components focus mostly on applications that can
be roughly classified as belonging to: (a) computer vision domain, (b) Natural Language Processing
domain and (c) domain combining vision and language. Fig. 5 reflect this. Aside of selection
of tasks covering various aspects from those three domains, PTP offers several models that are
specialized for language or vision, but also includes several general usage components, such as
Feed Forward Network (with variable number of Fully Connected layers with activation functions
and dropout between them) or Recurrent Neural Network (with several cell types available; with
activation functions and dropout; the component can also work as encoder or decoder). PTP also
provides several ready to use non-trainable (but still parametrizable) components. That list includes
components useful when working with language, vision or other types of streams (e.g., tensor
transformations). There are also several general-purpose components, such as components calculating
losses and statistics, and publishers and viewers that enable the user to digest and analyze contents of
data streams. The diversity of those components illustrates the flexibility of the framework.
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Figure 5: Tasks, models and other components currently available in PTP.

3 Use case: the Image-CLEF Med-VQA 2019 challenge

The VQA-Med 2019 [BHD+19] is an open challenge organized as part of the ImageCLEF 2019
initiative [IMP+19]. The associated dataset belongs to the Visual Question Answering (VQA)
problem domain. with a focus on radiology images. Despite its small size (a training set of 3,200
images with 12,792 question-answer pairs, divided into four C1–C4 categories) the dataset is scattered,
noisy and heavily biased, thus we decided to use it as a test bed for PTP, as we could encounter all
the challenges that one must deal with in practical scenarios.

Figure 6: Multi-stage training of the Supporting Facts Network. Green color denotes components pre-
trained on external datasets, whreas blue indicates parts of the pipeline pre-trained on Image-CLEF.

Summarizing our efforts, within a month we have build more than 50 diverse pipelines, developed
dozens of components and made 4 entries to the leaderboard by submitting the files generated straight
in PTP. Our final model, called Supporting Facts Network (SFN) [KRS+19], shared knowledge
between upstream and downstream tasks through the use of a coarse-grained categorizer combined
with five task-specific, fine-grained classifiers. Training of the final SFN architecture (the whole
final pipeline had 53 components!) was a complex procedure, with several transfer learning steps
(represented as red arrows in Fig. 6): (0) using pre-trained "Word Embeddings" (GloVe.6B.50d) and
"Feature Map Extractor" (ResNet-50), (1) pre-training of ”Question Categorizer” on C1,C2,C3 and
C4 categories, (2) pre-training “Input Fusion” on C1,C2 and C3 categories, (3) loading and freezing
the ”Question Categorizer”, loading and fine-tuning the "Input Fusion" and (4) training jointly the
final SFN architecture using 5 losses (one for each of the fine-grained classifier). Despite we haven’t
won the challenge (ranked 7), we found PTP extremely useful, supporting all the abovementioned
operations and enabling us to rapidly prototype new solutions and ideas.
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