
Compiling Classical ML Pipelines into Tensor
Computations for One-size-fits-all Prediction Serving

Supun Nakandala1, Gyeong-In Yu2, Markus Weimer3, Matteo Interlandi3
1University of California San Diego, 2Seoul National University, 3Microsoft

snakanda@eng.ucsd.edu, gyeongin@snu.ac.kr,
{mweimer,mainterl}@microsoft.com

Abstract

Recent advances in Deep Neural Networks (DNNs) and the subsequent explosion
of DNN frameworks have fostered the creation of a new class of systems. ONNX,
TVM, and TensorRT are notable examples of such systems: they share the same
goal of providing a runtime for DNN model inference with state-of-the-art perfor-
mance, ease of deployment on hardware accelerators (e.g., GPUs), and portability
across platforms and devices. Yet, in the enterprise space data is mostly tabular and
classical Machine Learning (ML) techniques such as tree methods are frequently
used, often within complex pipelines composed of data featurizers and feature
selection operators. Unfortunately, in the classical ML space no unified inference
serving system exists. Therefore, developers are forced to resort to bespoken solu-
tions or subpar performance. In this work we present HUMMINGBIRD: a system
able to compile classical ML pipelines end-to-end into tensor computations. It
thereby seamlessly leverages the features provided by DNN inference systems,
e.g., ease of deployment, operator optimizations and GPU support. We discuss the
challenges, our initial system prototype, and promising initial empirical results.

1 Introduction
Machine Learning (ML) infused applications are becoming ever more pervasive [18]. The expec-
tation is that in the future, ML will play a major role in our day to day life [6, 9]. This outlook
has been boosted by recent advances in Deep Neural Networks (DNNs) [24, 32, 23] and by the
subsequent explosion in the number of DNNs frameworks [30, 13, 11, 12], DNN-specific hardware
accelerators [25, 22, 1, 2], and DNN-enabled devices [3]. In this fast-evolving world, systems such as
ONNX Runtime [8], TVM [21], TensorRT [17], and nGraph [14] have been developed with the goal
of simplifying the deployment of trained DNN models by providing a target runtime for prediction
serving. These systems mainly operate at the abstraction level of tensor operations, and are capable
of executing arbitrary tensor computation graphs implemented in any of the major DNN frameworks,
often by first running optimization passes, and by supporting different hardware backends.

Yet, if we look at how the majority of enterprises currently do ML [26], we notice that the situation is
very different. For instance, in enterprises valuable data is often stored in tabular format [18], where
classical ML techniques such as linear models and tree ensemble methods are often more effective. In
this scenario, Data Scientists build model pipelines by composing data featurizers, feature selectors
and ML models into Directed Acyclic Graphs (DAGs) of operators, whereby supporting end-to-end
(1) model deployment, (2) optimizations, and (3) execution on hardware accelerators is arduous.
The same tools and systems used for training the model pipelines are often used for prediction
serving, not always with good performance results (e.g., if containerized execution is necessary to
run Python code in a non-Python production environment [29]). Alternatively, bespoken solutions
can be implemented [28, 5], but the process is not scalable e.g., among different products and devices,
and if custom kernels are required for exploiting state-of-the-art hardware.

To overcome the above limitations, in this work we present HUMMINGBIRD: a system where trained
classical ML pipelines are end-to-end compiled into tensor computations, therefore allowing the



execution of classical ML pipelines on DNN prediction serving runtimes. HUMMINGBIRD enables
a significant reduction in engineering effort, and allows the exploitation of the many optimizations
already available in DNN prediction serving systems, as well as enabling execution on hardware
accelerators, and ease of deployment on devices (e.g., IoT) and platforms (e.g., web browser). In
building HUMMINGBIRD we had to overcome several challenges. First, operators in classical ML
pipelines are a mix of both linear algebra (arithmetic) operators (e.g., generalized linear models,
feature scaling) and algorithmic operators (e.g., random forest, gradient boosting trees, feature
hashing); compiling algorithmic operators into tensor computations is a non-trivial task. Second, since
our focus is prediction serving, the requirement is low latency and efficient inference performance
whereby we need to assure that compiled pipelines have reasonable performance. Third, we want
to achieve system generality with support for many classical operators, while at the same time
maintaining the ability to compile the source pipelines into many target environments including CPU,
GPU, and other hardware accelerators.

In this paper we will describe how HUMMINGBIRD is able to address the above challenges by
embracing techniques from both compilers and database optimizers. Furthermore, we will show
that by following such approach, HUMMINGBIRD opens up a whole array of novel optimizations
for classical ML pipelines. This includes cost-based operator compilation strategy selection, DAG
transformations, and cross-operator optimizations. Early empirical results show that our approach
can enable more than 10× speedup compared to original tools/systems for classical ML inference,
while enabling seamless hardware acceleration using GPUs.

2 System Overview
HUMMINGBIRD takes in a pre-trained classical ML pipelines as input and compiles it into a DAG
of tensor computations. Unlike DNN-based models, which are expressed using low-level tensor
operators, classical ML methods are expressed using a mix of high-level arithmetic and algorithmic
operators. Feature scaling, one-hot encoding, and random forest evaluation are examples of some of
those operators. Fig. 1 (A) shows examples of two such pipelines. During the compilation process,
HUMMINGBIRD first translates the given pipeline into an intermediate representation (IR) format.
Before emitting the compiled tensor DAG, it invokes it’s optimizer to perform optimization passes
over the IR. The high-level architecture of HUMMINGBIRD is shown in Fig. 1 (B). The current version
of HUMMINGBIRD is implemented as an extension of ONNXMLTools [15] and supports compiling
Scikit-learn [31] pipelines into TorchScript [10], ONNX, and TVM output formats. Adding support
for other ML tools (e.g., ML.NET [19]) is left to future work.

Imputer

OneHot
Union

Logistic 
Regression

Imputer

OneHot

Union Scaler
Feature 
Selector

Random 
Forest

Categorical
Features

Numerical
Features

Pipeline 1

Pipeline 2 Tensor Computation DAG

Trained Classical ML Pipeline

Hummingbird

IR

Optimizer

Optimized IR

Tensor DAG Generator

(A) (B)

Figure 1: (A) Two examples of classical ML pipelines. (B) High-level architecture of HUMMINGBIRD.

Compiling Algorithmic Operators into Tensor Computations. One of the key challenges for
HUMMINGBIRD is translating algorithmic operators into tensor computations. Algorithmic operators
perform inherently asymmetric data accesses and control flow decisions. For example, in a decision
tree ensemble potentially every tree is different from each other with respect to the structure, the
decision variables, and the threshold values. But tensor operators such as matrix multiplication, index
select, and tensor concatenation perform symmetric (bulk) operations. Thus, to cast algorithmic
operators into tensor computations, we introduce a degree of redundancy. Based on the level
of redundancy introduced, we can come up with different compilation strategies. The degree of
redundancy is informed by model statistics such a tree-structure (for tree-based models) or sparsity
(e.g., for linear models). HUMMINGBIRD can currently compile around 40 operators. We support
the most popular classical ML models (e.g., tree ensembles, linear models) and featurizers (e.g., one

2



hot encoding, polynomial featurizer) including the ones that operate on strings. However, currently
we cannot handle text featurizers such as TF-IDF. While this is a limitation, we believe its impact is
low as deep learning-based models (e.g., [23]) are increasingly used for feature extraction from text.
Due to space constraints we only explain the compilation of tree ensembles and related compilation
strategies in §4. Next, we outline the set of optimizations currently implemented in HUMMINGBIRD.

3 System Optimizations
HUMMINGBIRD’s optimizations can be broadly classified into three categories:

Logistic	
Regression

Imputer

OneHot

Union Scaler

Feature	
Selector

Feature	
Selector

Scaler +	Logistic	
Regression

Imputer

OneHot

Union

Feature	
Selector

Feature	
Selector

Categorical
Features

Categorical
Features

Numerical
Features

Numerical
Features

(A)

(B)

Figure 2: HUMMINGBIRD optimizations. (A) Feature selection push-down (DAG transformation), (B) Fusing
feature scaling with logistic regression (cross-operator optimization).

DAG transformations. In classical ML pipelines there are opportunities to optimize the end-to-end
pipeline through transformation rules, which are only applicable in the prediction setting. For example
consider the transformed version of the Pipeline 1 of Fig. 1 shown in Fig. 2 (A). In Pipeline 1, before
feeding the features to the linear model, there is a feature selection operator to discard not useful
features. However, during prediction time this operator can be pushed down, similarly to projection
push-down in databases. This avoids redundant computations such as scaling and one-hot encoding
for discarded features, or even reading the feature at all.

For operators such as feature scaling, which performs 1-to-1 transformations, selection push-down
can be easily implemented. However, for 1-to-n and n-to-1 operators such as one-hot encoding and
polynomial featurizer, the operator will have to absorb the feature selection. After absorbing, it is
possible that some of the original features can still be discarded as they are not used. Note that for
some operators, such as feature normalizers, it is not possible to push-down the feature selection.

Even if the original pipeline doesn’t have a feature selection operator, it is possible to inject one and
then push it down to avoid redundant computations. L1 regularization (Lasso) is a typical example
where feature selection is implicitly performed. The same idea can be extended to tree-based models
to prune the features that are not used as decision variables.

Cross-operator optimizations. Our approach also opens up the opportunity to perform several
cross-operator optimizations. This includes arithmetic rewrites and operator batching optimizations.
For example the scaling operator and logistic regression model in the pipeline shown in Fig. 2 (A)
can be merged into one operator which performs a single generic matrix multiplication (GEMM)
operation. Furthermore, consider a stacked ensemble model which is composed of logistic regression,
linear SVM, and a Naive Bayes models. While these models are conceptually different, during
inference time all three of them are essentially performing a GEMM operation. Thus, it is possible to
batch them together into one GEMM operation in order to reduce the overheads.

Runtime optimizations. Our compilation approach enables us to leverage runtime-dependant
optimizations such as low-precision inference (e.g., in TensorRT, TVM), automatic operator fusion,
and optimized kernel generation (e.g., TVM) which are not possible or hard to implement otherwise.

Cost-based compilation target selection. When compiling classical ML pipelines, for a given
high-level operator there can be more than one compilation target. For example, in the case of
decision tree-based models, HUMMINGBIRD currently supports three possible compilation strategies.
In practice, none of the strategies are globally optimal, but instead they are all applicable in different
situations based on the input model structure. For example, as we will see in the next section, one
strategy HUMMINGBIRD uses to implement tree inference is to compute all internal decisions at
once [34]. Clearly, as the size of the decision trees get bigger, this strategy will be significantly
inefficient due to redundant computations. With this strategy we in fact perform O(2h) (h is the

3



height of the tree) computations whereas the original algorithmic operator needs to perform only
O(h) comparisons. Nevertheless, the above compilation strategy implement tree traversal as GEMM
operations, therefore up to a certain depth level this strategy can be actually optimal performance-wise
on modern hardware, where GEMM operations can run highly efficiently. The exact crossover point
where one strategy outperforms the others is determined by the characteristics of the execution
engine and the available hardware. For instance, we have experimental evidences showing that the
above strategy performs better over shallow trees (h ≤ 3), whereas tree-traversal-based strategies
perform better over deep trees. Thus, in HUMMINGBIRD we use a cost model for compilation target
selection, reminiscent to relational data management systems. Next we give details on the strategies
HUMMINGBIRD uses to compile tree-base models into tensor computations.

4 Compilation Strategies for Tree-base Methods
Trained tree-based models are currently compiled by HUMMINGBIRD using three different strategies,
based on run-time statistics (e.g., batch size) and tree structure.

0.1 4.6 1.9 10.1 3.5

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

0 0 0 0

0.5 2.0 5.5 1.5X < = 0 0 1 0

0 0 1 0 X

1 1 -1 -1 -1

1 -1 0 0 0

0 0 1 1 -1

0 0 1 -1 0

== 2 1 2 1 0

1 0

0 1

0 1

1 0

1 0

X 1 0=

C1

F1 
< 2.0

F0 
< 5.5

F3
< 1.5

F2 
< 0.5

C2 C1

C2 C1

Node 0

Node 1

Node 4 Node 5

Node 2

Node 3

Node 6 Node 7

Node 8

X (input)

A

B

C

D

E

Result

Figure 3: Decision Tree inference: GEMM strategy.

Strategy 1: GEMM. With this strategy we cast the evaluation of a decision tree as a series of three
GEMM operations interleaved by two logical operators. Fig. 3 shows the high-level idea. Let m be
the number features in a record, n be the number of internal nodes in the tree, l be the number of leaf
nodes, and c be the number of classes.

We first create 5 matrices (A, B, C, D, and E) representing the structure of the decision tree. A
is a m × n matrix having Ai,j set to 1 if and only if the index of the feature being evaluate at the
internal Node i is F j. Otherwise it is set to 0. Matrix B is a 1 × n matrix with B1,i set to the
threshold value of the internal Node i. We multiply the input X with A and then perform a less than
(<) operation to get an indicator matrix denoting which internal nodes evaluated to true.1 We next
multiply the indicator matrix by the n× l matrix C. Ci,j is set to 1 if internal node corresponding to
row i is on the path to leaf node corresponding to node j from root with evaluating to true. It is set
to -1 if the internal node is in the path and evaluates to false. Otherwise it is set to 0. The result of
this multiplication operation is then subjected to equal condition with matrix D to get an indicator
matrix denoting which leaf node evaluated to true. D is a 1×m matrix with D1,i set to the number
of internal nodes in the path to the leaf node denoted by column i from root node which evaluates
to true. The resultant indicator matrix is then multiplied by matrix E to get the final result. Ei,j

is set to 1 if and only if the leaf node corresponding to row i has class label j. Fig. 3 depicts this
strategy for binary classification, but the approach can be easily extended to support multi-class and
regression tasks. In the case of tree ensembles, we create the above matrices for each tree and batch
them together to produce 3-dimensional tensors. As the number of leaf nodes and internal nodes can
vary between trees, we pick the maximum number of leaf nodes and internal nodes for any tree as
the tensor dimensions, and pad the smaller matrix slices with zeros. Similarly, when the input X
contains batches with multiple records, we perform batched variants of GEMM and logical operators.

Strategy 2: TreeTraversal. In the GEMM strategy we incorporated two forms of redundancy: (1)
storage redundancy by padding matrix slices; and (2) computational redundancy by evaluating all
internal nodes and leaf nodes when only few of them actually need to be evaluated. In this second
strategy, we try to reduce the computational redundancy by mimicking the typical tree traversal
implemented using tensor operators. The high-level approach is shown in Fig. 4. Given a decision

1Here, we focus on < nodes. Others are equally possible.

4



Node

Left Nodes

Right Nodes

Feature Ids

Thresholds

Classes

Tree Data Structure (Corresponds to tree in Figure 2)

Node (initial 0)

Select 
Column

Tree Data 
Structure

Left

Right

Feature Id

Threshold

Class

X

Select 
Column

<

Where

Final Class
Max tree depth reached

If true

If false

Repeat until max tree depth not reached
0 1 2 3 4 5 6

condition

7 8

1 4 3 6 4 5 6 7 8

2 5 8 7 4 5 6 7 8

2 1 0 3 0 0 0 0 0

0.5 2.0 5.5 1.5 0 0 0 0 0

-1 -1 -1 -1 1 2 2 1 1

Figure 4: Decision Tree inference: TreeTraversal strategy.

tree we create a matrix maintaining the structure of the tree. Each column in this matrix corresponds
to a tree node. The matrix has 5 rows and each row contains different information about each tree
node. The first row contains the node id of the left child and the second row contains the node id of
the right child. For leaf nodes the same parent node id is repeated. The third row contains the index
of the feature that is being evaluated at each node. For leaf nodes this is set to zero. The fourth row
contains the threshold value and for leaf nodes again this is set to zero. The last row contains the
class label corresponding to each node and for internal nodes this is set to -1 (invalid).

Given the above tree data structure, starting with the initial node id of zero (root node), we slice the
corresponding column from the structure matrix. We then select the feature id value and use that
to select the corresponding feature value from the input (X). We then perform a less than check to
determine whether the internal node is evaluated to true or false. Based on the evaluation we select
either the left child id or right child id as the node id for the next iteration. This operation can be
performed using the Where operator available in most tensor runtimes. To perform the full tree
inference this process can be repeated until we reach a leaf node. However, instead of iterating in
a loop we exploit the fact that we know the maximum depth of this tree to unroll the loop for max
depth iterations. The tree data structure is created in way such that if it reaches leaf node before
reaching the max depth, the same class label will be selected repeatedly. In the case of an ensemble
with multiple trees, we batch individual tree data structures into a 3-dimensional tensor with number
of tree nodes set to the maximum number of nodes in any tree. Similar to the first strategy, we pad
the matrix slices corresponding to smaller trees and invoke the batched variants of the operators.

C1

F1	
<	2.0

F0	
<	5.5

F3
<	1.5

F2	
<	0.5

C2 C1

C2 C1

F1	
<	2.0

F0	
<	5.5

F3
<	1.5

F2	
<	0.5

C2 C1 C1 C1C1 C1 C2 C2

2

1 0

0 0 3 0

2.0 5.5

0 0 1.5 0

1 1 2 2 2 1 1 1

Original	Unbalanced	Tree Tree	Data	Structures	for	the	Balanced	TreeTransformed	Balanced	Tree
Classes

Fe
at
ur
e	
Id
s

Th
re
sh
ol
ds

0.5

Figure 5: Decision Tree inference: BalancedTreeTraversal strategy.

Strategy 3: BalancedTreeTraversal. This strategy is similar to the previous one in spirit. However,
in addition to incorporating redundancy to make all trees in the ensemble have the same number
of nodes, it requires all trees in the ensemble to be complete balanced trees. Consider the example
scenario shown in Fig. 5. Given a decision tree, we first find out the maximum depth of the tree.
We then transform the decision tree by incorporate dummy internal nodes and replicating the
corresponding leaf nodes to make the tree a balanced tree. We create three sets of data structures
to maintain the structure of the decision tree: (1) indices of features checked by each internal node;
(2) threshold value for each internal node; and (3) class labels. Features ids and threshold values are
organized by depth levels. We exploit the balanced nature of the trees to remove the look-ups for
finding the left and right child node ids of a given node. In the case of a tree ensemble, we select
the maximum depth of any tree to transform the decision trees. Additionally, we batch the tree data
structures corresponding to each tree, and invoke batched variants of the tensor operations.

5 Experimental Evaluation
We run some experiments to show (1) how HUMMINGBIRD performs compared to current state of
the art wrt inference over tree ensembles, and (2) end-to-end performance over complete pipelines.

5



1 10 100 1000 10000
n_rows

10 1

100

101

102

103

104

105

106

s p
er

 ro
w 

- l
og

Tree Depth=10/# Trees=1000/# Features=100
XGBoost/CPU
Rapids/GPU
HB-TS/GPU
HB-TS/CPU

HB-TVM/GPU
HB-TVM/CPU
ONNXML/CPU

(a) Micro-benchmark

1 10 100 1000 10000
n_rows

10 1

100

101

102

103

s p
er

 ro
w 

- l
og

End-to-end Pipeline 1
SK/CPU
HB-TS/CPU
HB-TS/CPU 1-Core
HB-TS/GPU
ONNX-ML/CPU

(b) Pipeline 1

1 10 100 1000 10000
n_rows

100

101

102

103

104

s p
er

 ro
w 

- l
og

End-to-end Pipeline 2
SK/CPU
HB-TS/CPU
HB-TS/GPU
HB-TS/CPU 1-Core
ONNX-ML/CPU

(c) Pipeline 2
Figure 6: HUMMINGBIRD performance evaluation.

Experimental Setup. We use an Azure NC6 v2 machine with 112 GB of RAM, Intel Xeon CPU
E5-2690 v4 @ 2.60GHz, and Nvidia P100 GPU. The machine runs Ubuntu 18.04 with PyTorch 1.2.0,
TVM 0.5, sklearn 0.21.3, XGBoost 0.90, ONNX Runtime 0.5, Rapids 0.9, and CUDA 10.0.

Gradient Boosting Micro-benchmark. We first run a micro-benchmark to evaluate the performance
of translating tree-based models. We trained a XGBoost [20] model. We evaluate HUMMINGBIRD
(strategy 3) with TVM (HB-TVM) and PyTorch 2 (HB-TS) backends against three baselines: XG-
Boost, ONNX-ML [7], and Nvidia Rapids Forest Inference Library (FIL) [16]. We use a synthetic
dataset which has 100 features and 10,000 records. We vary the inference batch size and use 1000
trees with max tree depth set to 10. From the results we can see that HB-TVM outperforms the
baselines (for batch size of 10k we are on par with Rapids) both on CPU and GPU. HUMMINGBIRD
with PyTorch back-end is on par with the natives CPU and GPU implementations for small batch
sizes, whereas it is 3× to 5× slower for larger batches. This is mainly due to TVM ability to fuse
operators into efficient kernels and scheduling tuning. Note that ONNX-ML’s scaling is linear here,
as its current implementation of tree inference is neither optimized for batch or multicore execution.

End-to-end Pipeline Evaluation. For this set of experiments, we use the two pipelines shown in
Fig. 1 (A), and train them on the Forest Covertype dataset [33]. For the feature selector operator we
set the number of features to 15. For the random forest model we use 100 trees with max depth set to
10. We compare inference performance for the original pipeline implementations in Scikit-Learn and
ONNX-ML against HUMMINGBIRD with PyTorch backed on varying batch sizes. The results are
shown in Fig. 6b and c. In both pipelines,: (1) ONNX-ML performs best for batch of size but then it
is not able to take advantage of bigger batch sizes; (2) HUMMINGBIRD always performs better than
sklearn, while it performs better than ONNX-ML for large batches; (3) multicore execution do not
improve performance for HUMMINGBIRD wrt single core; and (4) GPU execution provides better
performance for large batches, up to 15× for pipeline 2.

6 Related Work
PRETZEL [28] is a white box prediction serving system for classical ML pipelines. PRETZEL
optimizes resource usage by pooling memory and threads among operators and allows similar
pipelines to share operators. In contrast, HUMMINGBIRD casts ML pipelines into tensor computations.
Hence, it can take advantage of existing serving systems for DNN models and ease the deployment
on many target environments. RAPIDS [4] is a ML library specifically built for NVIDIA GPUs.
RAPIDS provides GPU implementations for Pandas DataFrames and classical ML algorithms.
Although RAPIDS provides high-performance data manipulation and ML training implementations,
inference tasks have been only added lately [16]. HUMMINGBIRD, on the other hand, provides
prediction serving on various hardware and platforms, by taking advantage of existing solutions for
DNN, hence minimizing engineering efforts.

7 Conclusions
Prediction serving systems for DNNs are maturing rapidly, whereas prediction serving for classical
ML pipeline is still limited to ad-hoc solutions, or poor performance and limited portability. In
this paper, we propose a framework to compile full pipelines into tensor operations such that DNN
runtimes can be directly used for scoring classical ML models end-to-end. Our early results show
that our approach is able to outperform custom (C++ and CUDA) implementations. We are currently
working on porting more algorithms, exploring additional optimizations unlocked by our approach,
as well as integrating HUMMINGBIRD with other optimizers [27].

2For the PyTorch backend, we compile models into TorchScript for better performance.

6



References
[1] Celebra Chip. https://www.wired.com/story/power-ai-startup-built-really-big-chip/.

[2] Graphcore IPU. https://www.graphcore.ai/.

[3] Iphone’s Neural Engine. https://www.wired.com/story/how-apple-makes-ai-chip-powering-iphones-fancy-tricks/.

[4] Nvidia RAPIDS. https://developer.nvidia.com/rapids.

[5] NVIDIA RAPIDS cuML. https://github.com/rapidsai/cuml.

[6] NY Post: How AI will change every aspect of our lives. https://nypost.com/2018/09/07/
how-artificial-intelligence-will-change-every-aspect-of-our-lives/.

[7] ONNX ML. https://github.com/onnx/onnx/blob/master/docs/Operators-ml.md.

[8] ONNX Runtime. https://github.com/microsoft/onnxruntime.

[9] ORACLE Magazine: It’s pervasive, AI is everywhere. https://blogs.oracle.com/oraclemagazine/
its-pervasive-ai-is-everywhere.

[10] TorchScript Documentation. https://pytorch.org/docs/stable/jit.html.

[11] CNTK. https://docs.microsoft.com/en-us/cognitive-toolkit/, 2018.

[12] MXNet. https://mxnet.apache.org/, 2018.

[13] TensorFlow. https://www.tensorflow.org, 2018.

[14] nGraph. https://www.ngraph.ai/, 2019.

[15] ONNXMLTools. https://github.com/onnx/onnxmltools, 2019.

[16] RAPIDS Forest Inference Library. https://medium.com/rapids-ai/
rapids-forest-inference-library-prediction-at-100-million-rows-per-second-19558890bc35, 2019.

[17] Tensor-RT. https://developer.nvidia.com/tensorrt, 2019.

[18] Ashvin Agrawal, Rony Chatterjee, Carlo Curino, Avrilia Floratou, Neha Gowdal, Matteo Interlandi, Alekh
Jindal, Kostantinos Karanasos, Subru Krishnan, Brian Kroth, Jyoti Leeka, Kwanghyun Park, Hiren Patel,
Olga Poppe, Fotis Psallidas, Raghu Ramakrishnan, Abhishek Roy, Karla Saur, Rathijit Sen, Markus
Weimer, Travis Wright, and Yiwen Zhu. Cloudy with high chance of DBMS: A 10-year prediction for
Enterprise-Grade ML. arXiv e-prints, page arXiv:1909.00084, Aug 2019.

[19] Zeeshan Ahmed, Saeed Amizadeh, Mikhail Bilenko, Rogan Carr, Wei-Sheng Chin, Yael Dekel, Xavier
Dupre, Vadim Eksarevskiy, Eric Erhardt, Costin Eseanu, Senja Filipi, Tom Finley, Abhishek Goswami,
Monte Hoover, Scott Inglis, Matteo Interlandi, Shon Katzenberger, Najeeb Kazmi, Gleb Krivosheev, Pete
Luferenko, Ivan Matantsev, Sergiy Matusevych, Shahab Moradi, Gani Nazirov, Justin Ormont, Gal Oshri,
Artidoro Pagnoni, Jignesh Parmar, Prabhat Roy, Sarthak Shah, Mohammad Zeeshan Siddiqui, Markus
Weimer, Shauheen Zahirazami, and Yiwen Zhu. Machine learning at microsoft with ML.NET, 2019.

[20] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages
785–794, New York, NY, USA, 2016. ACM.

[21] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen Shen,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm: An automated
end-to-end optimizing compiler for deep learning. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, OSDI’18, pages 579–594, Berkeley, CA, USA, 2018.
USENIX Association.

[22] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian Caulfield, Todd Massengill,
Ming Liu, Mahdi Ghandi, Daniel Lo, Steve Reinhardt, Shlomi Alkalay, Hari Angepat, Derek Chiou,
Alessandro Forin, Doug Burger, Lisa Woods, Gabriel Weisz, Michael Haselman, and Dan Zhang. Serving
dnns in real time at datacenter scale with project brainwave. IEEE Micro, 38:8–20, March 2018.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv e-prints, page arXiv:1810.04805, Oct
2018.

7

https://www.wired.com/story/power-ai-startup-built-really-big-chip/
https://www.graphcore.ai/
https://www.wired.com/story/how-apple-makes-ai-chip-powering-iphones-fancy-tricks/
https://developer.nvidia.com/rapids
https://github.com/rapidsai/cuml
https://nypost.com/2018/09/07/how-artificial-intelligence-will-change-every-aspect-of-our-lives/
https://nypost.com/2018/09/07/how-artificial-intelligence-will-change-every-aspect-of-our-lives/
https://github.com/onnx/onnx/blob/master/docs/Operators-ml.md
https://github.com/microsoft/onnxruntime
https://blogs.oracle.com/oraclemagazine/its-pervasive-ai-is-everywhere
https://blogs.oracle.com/oraclemagazine/its-pervasive-ai-is-everywhere
https://pytorch.org/docs/stable/jit.html
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://mxnet.apache.org/
https://www.tensorflow.org
https://www.ngraph.ai/
https://github.com/onnx/onnxmltools
https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows-per-second-19558890bc35
https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows-per-second-19558890bc35
https://developer.nvidia.com/tensorrt


[24] Hany Hassan Awadalla, Anthony Aue, Chang Chen, Vishal Chowdhary, , Christian Federmann, Xuedong
Huang, Marcin Junczys-Dowmunt, Will Lewis, , Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes,
Tao Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dongdong Zhang,
Zhirui Zhang, and Ming Zhou. Achieving human parity on automatic chinese to english news translation.
arXiv:1803.05567, March 2018.

[25] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt,
D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony,
K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon. In-datacenter performance analysis of a tensor processing unit. In
2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), pages 1–12,
June 2017.

[26] Kaggle. Kaggle data science survey. https://www.kaggle.com/surveys/2017, 2019.

[27] Konstantinos Karanasos, Matteo Interlandi, Doris Xin, Fotis Psallidas, Rathijit Sen, Kwanghyun Park, Ivan
Popivanov, Supun Nakandal, Subru Krishnan, Markus Weimer, Yuan Yu, Raghu Ramakrishnan, and Carlo
Curino. Extending relational query processing with ml inference, 2019.

[28] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santambrogio, Markus Weimer, and
Matteo Interlandi. PRETZEL: Opening the black box of machine learning prediction serving systems. In
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pages 611–626,
Carlsbad, CA, October 2018. USENIX Association.

[29] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Markus Weimer, and Matteo Interlandi. From the edge
to the cloud: Model serving in ML.NET. IEEE Data Eng. Bull., 41(4):46–53, 2018.

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS-W,
2017.

[31] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine
learning in python. J. Mach. Learn. Res., 12:2825–2830, November 2011.

[32] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large
scale visual recognition challenge. International Journal of Computer Vision, 115(3):211–252, Dec 2015.

[33] UCI Machine Learning Repository. Covertype Data Set. https://archive.ics.uci.edu/ml/datasets/Covertype,
2019.

[34] Gyeong-In Yu, Saeed Amizadeh, Artidoro Pagnoni, Byung-Gon Chun, Markus Weimer, and Matteo
Interlandi. Making classical machine learning pipelines differentiable: A neural translation approach.
CoRR, abs/1906.03822, 2019.

8

https://www.kaggle.com/surveys/2017
https://archive.ics.uci.edu/ml/datasets/Covertype

	Introduction
	System Overview
	System Optimizations
	Compilation Strategies for Tree-base Methods
	Experimental Evaluation
	Related Work
	Conclusions

