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Abstract

In-memory computing is an emerging computing paradigm that could enable deep-
learning inference at significantly higher energy efficiency and reduced latency.
The essential idea is to map the synaptic weights corresponding to each layer
to one or more computational memory (CM) cores. During inference, these
cores perform the associated matrix-vector multiply operations in place with O(1)
time complexity, thus obviating the need to move the synaptic weights to an
additional processing unit. Moreover, this architecture could enable the execution
of these networks in a highly pipelined fashion. However, a key challenge is
to design an efficient communication fabric for the CM cores. In this work,
we present one such communication fabric based on a graph topology that is
well suited for the widely successful convolutional neural networks (CNNs). We
show that this communication fabric facilitates the pipelined execution of all
state-of-the-art CNNs by proving the existence of a homomorphism between one
graph representation of these networks and the proposed graph topology. We then
present a quantitative comparison with established communication topologies and
show that our proposed topology achieves the lowest bandwidth requirements
per communication channel. Finally, we present a concrete example of mapping
ResNet-32 onto an array of CM cores.

1 Introduction

Training and inference of Deep neural networks (DNNs) is a computationally intensive task and has
motivated the search for novel computing architectures targeting this application [2, 10, 11, 17, 3, 8].
However, one of the primary reasons for the computational inefficiency, namely the need to shuttle
millions of synaptic weight values between the memory and processing units, remains unaddressed.
In-memory computing is an emerging computing paradigm that addresses this challenge of processor-
memory dichotomy. The essential idea is to map a DNN on multiple crossbar arrays of memory
devices that communicate with each other. A layer of the DNN can be implemented on (at least)
one crossbar, in which the weights of that layer are stored in the charge or conductance state of the
memory devices at the crosspoints. The propagation of data through that layer is performed in a
single step by inputting the data on the crossbar rows and obtaining the result of the associated matrix
vector multiply operation at the columns. These operations are performed in place by exploiting the
physical attributes of the memory devices. The results are then passed through the neuron nonlinear
function and input to the next layer. The neuron nonlinear function is typically implemented at
the crossbar periphery using analog or digital circuits. There are several recent demonstrations of
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in-memory computing using SRAM [16, 9, 1, 15], NOR Flash [12] as well as resistive memory
devices [18, 6, 14].

However, the ability to perform matrix-vector multiplication in constant time, as well as the one-to-
one mapping between synaptic weights and memory devices, creates a new challenge for designers of
such accelerators. If we want to perform computation in a pipelined manner, the bottleneck becomes
how quickly we can communicate activations from one layer/computational memory (CM) core to
another. This clearly depends on both the architecture of the neural network model itself, i.e. how the
different layers are connected, as well as the topology of the communication fabric of the accelerator
device, i.e. how long it takes to transfer activations between physically distinct layers. To manufacture
a general-purpose inference engine, the challenge would be to design a communication topology that
supports low-latency execution for a wide range of neural network architectures.

Contributions We attempt to address exactly the above problem with a focus on convolutional
neural networks (CNN) architectures due to their popularity in a range of tasks. Specifically, our
contributions are:

• We propose a novel graph topology (5 Parallel Prism, or 5PP) for pipelined execution of
CNNs that maximally exploits the physical proximity of computational units.

• We prove theoretically that all state-of-the-art neural networks featuring feedforward, resid-
ual, Inception-style and dense connectivity are mappable onto the proposed topology.

• We present a quantitative comparison of 5PP with existing communication topologies and
demonstrate its advantages in terms of latency, throughput and efficiency.

• We give a detailed example of how to map ResNet-32 onto an array of CM elements.

A CNN can be implemented in CM in a pipelined fashion if there exists communication channels that
match the connectivity of the network. If this is not the case, the activations from one CM core need
to be transferred through neighboring cores in order to reach their destination, adding unnecessary
cycles to the execution schedule. As the execution happens in a pipelined fashion, every core would
then systematically stall at every cycle until the slowest data transfer is completed, severely impairing
the throughput. Mathematically:
Definition 1.1. Given a communication fabric with topology F and the directed graph representation
C of a CNN, with vertices representing convolutional layers and edges representing activations
directed toward the direction of computation, then the CNN is executable in a pipelined fashion on F
if there exists a homomorphism h : C → F .

As the communication fabric will have to provide enough connection overhead to accommodate
a diverse set of networks, the homomorphism will generally be injective. In the next section, we
present one such graph representation, C, of CNNs.

2 A Consolidated Graph Representation of CNNs

Typically, CNN architectures are represented as directed graphs, with vertices representing convolu-
tional layers and directed edges representing activations directed toward their next layers. Neverthe-
less, CNN representations are not coherent with their physical implementation, some examples being
input images or concatenation operations themselves being represented as one vertex of the network,
or pooling operations being at times represented along convolutions in the same vertex and at times
separately. Based on these arguments, we present a consolidated graph representation of CNNs that
follow the following five design rules:

R1. Vertices are identified solely with convolutional layers. Any other operation, such as pooling or
addition for the residual path, is treated as pre- or post-processing of the convolution.

R2. We do not distinguish between input and output of a vertex. Vertices are either connected or not
connected. This is illustrated in Fig. 1a.

R3. Edges that may make the graph non-simple are removed. This is illustrated for the ResNet
architecture in Fig. 1b.

R4. Concatenation does not imply any operation on the data, thus it cannot be represented as a vertex
in the graph. Given this assumption, the concatenation of m vertices being fed into n others is
equivalent to a complete bipartite graph km,n as in Fig. 1c.
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Figure 1: Illustration of representation rules. Yellow layer in a. represents a layer with stride = 2;
green layer in d. represents a layers to which 3×3 max pooling is previously applied.

R5. A series-parallel (s-p) graph such as Inception can have some parallel path with latency much
smaller than the critical path (see Fig. 1d, with the nodes laid out in order of latency and the
critical path in red) that are unable to reach their physical destination unless they hop to the
neighboring vertex as the critical path is executing. We require that such activations hop to their
nearest temporally subsequent node (green arrows in Fig. 1d).

3 A New Communication Fabric: 5 Parallel Prism
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Figure 2: a. Unit graph, from left to right: our 3D representation, its canonical graph theory
representation as a complete graph K6, and its physical implementation, with vertices representing
computational units and edges representing bidirectional links. b. 5 Parallel Prism topology with
N vertices {a1, a2, ..., aM , b1, b2, ..., bM , cM , dM , eM , fM}; M = d(n− 6) /2e + 1. All diagonal
edges of the prisms are omitted for clarity.

Here we propose a topology F , referred to as 5 Parallel Prism (5PP), for the communication fabric.
5PP can be thought of as a graph constructed from the coalescing of multiple smaller graphs, referred
to as “unit graphs”. Figure 2a portrays the unit graph as an undirected complete graph K6. The
physical implementation of the unit graph in Fig. 2a clearly depicts how we maximize the use of
spacial proximity in the interconnection of CM units with non-negligible physical size: The basic
communication infrastructure takes place between a 2-by-3 neighborhood, which is the way of
packing six computational units on a meshgrid that yields the shortest intra-unit maximum distance.
The construction of an N -vertice 5PP starts from a disjoint union of M = d(n− 6) /2e + 1 unit
graphs. A complete algorithmic description of the construction of the 5PP is provided in Appendix A.

4 Mapping CNN architectures onto 5PP

Here we establish the existence a homomorphism between the consolidated graph representation of
four different state-of-the-art CNN architectures and the 5PP topology via an iterative H-coloring
method [5].
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4.1 Feedforward and ResNet topologies

The existence of a homomorphism between a standard, pre-2014 feedforward connection is banal, as
in their graph representation this connectivity is a path, and there always exists a homomorphism,
e.g.{a1, b1, a2, b2, a3, b3..., an}, that maps a path.

Residual networks (ResNet) are relatively deep networks that employ skip connections or shortcuts
to jump over certain layers [4].

Theorem 4.1. Any ResNet architecture can be H-colored onto the 5PP.

Proof Sketch. ResNet are series-parallel graphs with maximum out-degree do of the vertices equal to
2 for three adjacent vertices, which is reached for a residual path across layers with different strides,
where one resampling layer is required as shown in Fig. 1a. This kind of pattern is always mappable
inside the unit graph by definition of complete graph K6. A complete mathematical argument is
provided in Appendix B.1.

4.2 DenseNet topologies

Dense connectivity as proposed by [7] sees a sequence of densely connected layers, all with the same
channel depth, where every node receives as input the concatenation of all its preceding layers. The
DenseNet CNN comprises dense blocks connected in series.
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b

Figure 3: a. Representation of dense connectivity as a complete graph. b. Representation of dense
connectivity as a path graph.

Theorem 4.2. Any DenseNet topology can be H-colored onto the 5PP by using the maximum number
of edges possible.

Proof Sketch. To represent densely connected layers as a graph, there are two possible representa-
tions, based on whether activations are communicated to the subsequent layers before or after data
aggregation implied by the concatenation operation. In the former case, in Fig.3a, the activations that
are moved between layers are the output activations of each layer, and n densely connected layers
are equivalently n vertices with an edge connecting each pair of vertices: that is, a complete graph
Kn. Physically, these edges represent channels that communicate the same number of activations.
Conversely, in the latter case in Fig. 3b, the activations communicated between layers are the input
and output activations of each layer and, after application of R2 and R3, in the same fashion as
depicted in Fig. 1a,b, the dense connectivity streamlines into a path connectivity. Physically, these
edges represent channels where the number of activations that are communicated increases linearly in
the direction of execution. As our proposed topology is a sort of path connection of complete graphs
K6, we adopt both representations in Fig. 3 to distribute the communication and obtain the minimum
bandwidth requirements for the physical channels. A complete mathematical argument is provided in
Appendix B.2.

4.3 Inception-style topologies

Theorem 4.3. Inception v1,2,3,4 and Inception ResNet v1,2 are H-colorable on the 5PP.

Proof Sketch. Inception blocks feature a source concatenation node connecting to a maximum of
four parallel branches in all Inception architectures; Note that in our graph representation of Inception
networks, as discussed in design rule 4, we choose to hop all data from layers prior to the longest
latency path through the nearest temporally subsequent layer. Although this simple criterion allows
implementation of the Inception blocks of all Inception networks, data from one vertex can be hopped
through any temporally subsequent vertex and can be considered a design parameter to optimize
power consumption or maximum bandwidth of the links. We can prove the H-colorability of the
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single Inception blocks with property 3 based on these patterns. A complete mathematical argument
is provided in Appendix B.3.

5 Quantitative Evaluation of 5PP
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Figure 4: Bar plots of pipeline stage latency and bandwidth requirements for four state-of-the art
CNNs on a. topologies built in a similar fashion as the 5PP and b. well-established topologies.

This section explains why, among the possible complete graphs employed as unit graphs for building
the proposed topology, complete graphK6 and the corresponding topology 5PP constitute the optimal
choice. We also quantitatively compare 5PP with well-established communication topologies.

Evaluation metrics. The core criterion that defines optimality is the latency of the single pipeline
stage. When a homomorphism cannot be established, the latency of the single pipeline stage would be
limited by the additional computational cycles required for data movement. In Fig. 4, pipeline stage
latency is measured in number of computational cycles. The bandwidth of the links is determined by
the CNN layers with the greatest channel depth. We thus normalize the bandwidth requirements by
the quantity (Cmax · bitsact)/T with Cmax maximum number of channels per layer in the network,
bitsact the accuracy of the activations in bits and T the computational cycle.

Variations on 5PP. Figure 4a shows a comparison of these metrics between the 5PP and two
topologies built in the same fashion as the 5PP from complete graphs K4 (3PP) and K8 (7PP), with
the intent of showing the trend for topologies built on complete graphs with a lower and higher
number of edges. In terms of latency, 5PP never stalls the pipeline. It is not possible to establish
a homomorphism for every class of networks built on Kn, n < 5, resulting in the overall higher
pipeline stage latency as is the case for 3PP. Conversely, 5PP is a subgraph of any topology built
on Kn, n > 5, meaning the H-coloring still holds and the pipeline is never stalled. For DenseNet,
the higher the number of edges, the more effectively one can distribute the data movement, yielding
lower bandwidth requirements. Indeed, distributing the communication of activations as described in
Section 4 yields the minimum bandwidth requirement: If communication of the activations requires
bandwidth k, d densely connected layers can be made to communicate synchronously on a topology
built on a unit graph Kn requiring maximum bandwidth [k + k ·Θ (d(d− n) /(n− 2)e)] /T , where
Θ is the Heaviside step function and T the computational cycle. These lower requirements come
at the price of instantiating multiple additional edges that have no advantage in terms of latency.
In Fig. 4a, the 7PP does perform 1.5× better than 5PP solely on the bandwidth requirement for
DenseNet-201, at the cost of 1.44× more physical links overall.

Existing topologies. We now compare the performance of our topology with long-established
communication topologies [13] on the metrics defined in Section 3. We consider 2D meshes with
different aspect ratios as the prior art in communication fabric topologies. Note that mapping onto
these topologies is based on the same hypotheses as mapping onto the 5PP shown in Section 3.
Figure 4b. gives the bar plot rendition of pipeline stage latency and bandwidth requirements
measured in the same fashion as in Fig. 4a. In terms of latency, path-connected networks (AlexNet)
and DenseNet in its path representation (Fig. 3b) can be executed without breaking the pipeline.
Conversely, this shows quantitatively how the absence of an H-coloring between ResNet-32 and
Inception v4 impairs execution of the network by stalling the pipeline to allow communication
between non-adjacent vertices. With regard to bandwidth, thanks to the DenseNet representation
described in Section 4, 5PP significantly lowers bandwidth requirements 4× with respect to the best
2D mesh performance. Although the better performance overall in 5PP costs a greater number of
interconnections, their increase(2.31×) is significantly lower than the best factors of improvement in
latency(7×) and bandwidth(4×).
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6 Case study: ResNet-32 on a CM array
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Figure 5: Mapping of ResNet-32 on a 4-by-10 array of CM cores. Each layer is mapped onto one core.
Arrows indicate the communication of data between cores. Green arrows denote the propagation
of activations to the adjacent layer. Blue arrows represent data movement arising from residual
connections. Orange arrows indicate re-sampled residual connections, and red arrows represent
communication to residual re-sampling layers.

The physical mapping of a ResNet-32 [4] for CIFAR-10 on an array of CM cores, based on the 5PP
communication fabric, is depicted in Fig. 5. The network features 3 layer levels with channel depths
equal to 16, 32, and 64, whereas the input image size is 32×32 pixels. The CM cores are rendered
as boxes with their associated input (left) and output (bottom) memory. The links active in this
implementation verify the homomorphism discussed in section 4.1. Each core also comprises modest
digital processing capability to scale the crossbar outputs, e.g. to apply the batch normalization,
to apply the activation functions and perform the residual addition. We assume 576×576 for the
crossbar size per CM core, meaning the vector-matrix multiplication with a matrix of size 576×576
can be performed in one computational cycle. During execution, the elements of the crossbar hold one
convolutional weight each, while the input memory will store the pixel neighborhood required for the
convolution. The result of one dot product of the convolution, i.e. a single activation across the entire
channel depth, is stored in the output memory. Table 1 reports design parameters and performance and
area metrics based on hardware measurement and software simulations. As mentioned in Section 2,
the communication channels can communicate indistinctly to both the input memory (to communicate
the standard feedforward activations) or to the output memory (to communicate the activations used
for residual addition). The dataflow occurs row-wise starting from the core located at the top left.
Whenever one set of activations is computed by a core, it is communicated to the core assigned
the subsequent layer and stored in its input memory. Computation on one core begins when it has
received sufficient activations to perform the dot product corresponding to its own assigned layer. The
proposed topology ensures that the pipeline is never stalled irrespective of the bandwidth. However,
the most efficient implementation would be having sufficient bandwidth for all data transfer to occur
in parallel with the computation cycle. Conversely, if the bandwidth is not sufficient, a constant
communication overhead must be added to each computational cycle.

Weights Accuracy [bits] Activations Accuracy [bits] Links Data Rate [Gbps] Computational Cycle [ns]
4 8 5 100

Tops/W Single Classification Latency [µs] Throughput [Images/s] Area[mm2]
26.4 52 38600 0.0125[Digital Core] + 0.6[Analog array]

Table 1: Design parameters and resulting performance and area metrics.

7 Conclusions

We introduced 5 Parallel Prism (5PP), an interconnection topology for executing CNNs on an array of
Computational Memory cores. We then proved the executability of ResNet, Inception, and DenseNet
networks on the proposed communication fabric by proving the existence of a homomorphism
between a consolidated graph representation of the CNNs and 5PP. Moreover, we validated the
efficiency of our approach by comparing the proposed topology to various 2D meshes in terms
of inference latency as well as bandwidth requirements per communication channel. Finally, we
provided a case study with the physical mapping of ResNet-32 on an array of CM cores. We estimate
a throughput of 38k Images/s thanks to the unstaggered pipelining offered by our topology. The
presented work is a significant step toward developing general-purpose DNN accelerators based on
in-memory computing.
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A 5PP Construction

The construction of an N -vertice 5PP starts from a disjoint union of M = d(n− 6) /2e + 1 unit
graphs and is described by a pseudocode in Algorithm 1, with the resulting topology depicted in
Fig. 2b. To represent the overall topology, all diagonal edges of the prisms are omitted for clarity. .
The construction uses a vertex identification operation that keeps the graph simple as described in
Eq. 1, where u · v is the vertex identification operation, G is the graph to which it is applied and V(G),
E(G), the set of its vertices and edges.

u� v = {u · v | u, v ∈ V (G),∃ at most 1 (u · v, x) ∈ E(G),∀x ∈ V (G)} . (1)

Algorithm 1 5 Parallel Prism Construction

1: % The initial disjoint union of unit graphs has vertices: {ã1, b̃1, ..., ẽ1, f̃1, ..., ãM , ..., f̃M}
2: % It creates a 5PP with vertices {a1, ..., aM , b1, ..., bM , cM , dM , eM , fM}
3: % The first unit graph comprises the first 6 vertices of the 5PP
4:
5: {a1, b1, c1, d1, e1, f1} = {ã1, b̃1, c̃1, d̃1, ẽ1, f̃1};
6: for j = 1 : (M − 1) do
7: aj+1 = cj � ãj+1;

8: bj+1 = dj � b̃j+1;
9: cj+1 = ej � c̃j+1;

10: dj+1 = fj � d̃j+1;
11: ej+1 = ẽj+1;

12: fj+1 = f̃j+1;
13: end for

B Homomorphism Proofs

The process of verifying the existence of the homomorphism is often referred to as H-coloring [5].
We propose an iterative H-coloring method that verifies the H-coloring of the vertices of the directed
graph in their order from initial to final. That is, at the i-th iteration of verifying the H-coloring,
vertex vi in graph C is colored on a vertex in graph F such that there are enough edges to connect
it to whatever previous vertices v0,...,i−1 it is connected to. The homomorphism is proven if all
vertices of C have been successfully H-colored onto F at the last iteration. Note that the definition
of a homomorphism between a directed and an undirected graph is justified by the fact that, in our
representation of the communication fabric, undirected edges represent bi-directional communication
channels, which can be assigned either direction when the CNN is mapped onto it.

Generally speaking, the proof of existence of a homomorphism between two arbitrary graphs is an
NP-hard problem for any non-bipartite graph. Leveraging the regularity of graphs representing CNNs,
we present some properties of the 5PP that facilitate verification of the existence of a homomorphism
with the topologies of state-of-the-art CNNs.

b
v1

a c

v1 v1

v2 w2

w1

w3

w4

Figure 6: a. Example of H-coloring of an odd-vertices path. Vertex v1 can have maximum do = 5. b.
Example of H-coloring of an even-vertices path. Vertex v1 can have maximum do = 4. c. Example
of H-coloring of an even-vertices tree. H-coloring is then continued with complete bipartite graph
K2,4 between vertices v1∼2 and w1∼4.

We define an even(odd) H-coloring as an H-coloring that colors an even(odd) number of vertices.
Furthermore, we define the out-degree do of a vertex v of a directed graph as the number of outgoing
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edges from v. Figure 6 illustrates three H-colorings that are representative of the two main properties
of the 5PP:

P1. By construction, every vertex belongs to at least one complete graph K6. Given an odd(even)
H-coloring of the 5PP {a1, b1, ..., an, bn, ..., aN},∀n ≤ N , vertex aN has possible maximum
do =5(4). The maximum number of vertices accessible in parallel in our topology gives it its
name.

P2. Given any H-coloring of the 5PP {a1, b1, ..., an, bn, ..., aN},∀n ≤ N , one can always continue
the coloring with a complete bipartite graph Km,n with (m + n) ≤ 5. Furthermore, if the
H-coloring is odd(even), the coloring can be continued with a bipartite graph with (m+ n) = 6
only for configurations with n and m odd(even) numbers.

B.1 Proof of Theorem 4.1

In the ResNet architecture, given R2, we assimilate, without loss of generality, standard residual
connections to connections from the input memory of one vertex to the output of the next (in Fig. 1b,
a2 to a3, thus merging to the feedforward connection from a2 to a3). This requires the shortest
connections possible to implement the residual connection, merging with the feedforward connection
between two adjacent vertices. Let a graph represent a ResNet topology according to the rules in
Section 2. Such a graph is a series connection of paths (R3, Fig. 1b) and resampling layers (R2,
Fig. 1a) in that order. We prove a homomorphism by H-coloring the two elements in sequence. Any
path can be iteratively H-colored in 5PP as proved above, ending with a certain parity. Then, the
resampling layer is H-colored, which is equivalent to coloring a complete graph K3, represented in
Fig. 1a by vertices a3, a4 and a5. Regardless of the parity of the coloring before the resampling
layer, according to P1 there are always three uncolored vertices on which to color one K3; there are
also always enough edges, as K3 is always a subgraph of K6 for any three vertices belonging to K6.
Note that any other implementation of the residual connections would have yielded the same results
in terms of maximum do in the graph and number of adjacent vertices required.

B.2 Proof of Theorem 4.2

Let a graph represent an n-layer DenseNet topology. Assume there exists a homomorphism that
maps its layers {v1, ..., vn} to a sequence {a1, b1, a2, b2, ..., bm} on 5PP using all edges, ordered
as in Fig. 2b. If the number of densely connected vertices is ≤ 6, they all belong to the same K6

{a1, b1, ..., a3}, and the H-coloring follows from Fig. 3a. If the number of densely connected layers
is > 6, the complete connection of all individual instances of K6 is used, but there are vertices
that do not belong to the same K6. For example for eight layers, vertices b4 and a4 are connected
through a complete graph to {a2, ..., b3}, but not to a1 and b1. The communication of activations
from a1 and b1 to vertices b4 and a4 is thus distributed among the communication from the four
vertices {a2, ..., b3} belonging to the same K6 as b4 and a4 as described in Fig. 3b. In general, for
an arbitrary number n of densely connected layers, the i-th vertex, where i is an even(odd) number
> 6 and able to communicate with the previous 5(4) vertices through the communication fabric. The
edges between these 5(4) vertices and vi communicate the output activations of the previous 5(4)
layers, plus the activations from vertices {v1, ..., vi−6(5)}.

B.3 Proof of Theorem 4.3

c c c c c
c

12 7 4 10 6 10

x4 x7 x3
Stem Inception-A Reduction-A Inception-B Reduction-B Inception-C

Figure 7: Inception v4 architecture represented according to R1/4 featuring
17 Inception blocks connected through a series of complete bipartite graphs
{K2,2(In Stem, not shown in fig.),K1,4(×4),K1,2,K1,4(×7),K1,2,K1,4,K2,4,K2,1}.
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Inception-style architectures feature a less regular, broader spectrum of connections with respect
to the previous examples, comprising a sequence of s-p graphs (“Inception blocks”) connected in
series through concatenation nodes. The number of parallel branches always tapers in the direction
of the destination concatenation node and all vertices between source and destination nodes have
an out-degree lower than or equal to 2. Let a graph represent one Inception topology. Inception
topologies are made up of Inception blocks connected by concatenation nodes. Inception blocks are
s-p graphs with four or less parallel branches and vertices with do of at most 2. We first prove the
coloring of the individual Inception blocks. From P1, every vertex in a 5PP belongs to at least one
K6. Given a maximum of four parallel branches, they are always colorable on a plane with vertices
{an, bn, an+1, bn+1}, all belonging to a single K6 with vertices {an, bn, an+1, bn+1, an+2, bn+2}.
As {an, bn, an+1, bn+1} can be chosen belonging to the same K6, every vertex will have possible do
equal at least to the number of uncolored vertices in that K6, which is equal to 2. What remains to
be proven is the colorability of the concatenation nodes through which they are connected. From
P3, complete bipartite graphs with m + n < 5 are always colorable. This condition applies to all
concatenations in Inception architectures, which are therefore mappable.

11


	Introduction
	A Consolidated Graph Representation of CNNs
	A New Communication Fabric: 5 Parallel Prism
	Mapping CNN architectures onto 5PP
	Feedforward and ResNet topologies
	DenseNet topologies
	Inception-style topologies

	Quantitative Evaluation of 5PP
	Case study: ResNet-32 on a CM array
	Conclusions
	5PP Construction
	Homomorphism Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3


