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Abstract

We present a novel gradient compression algorithm, GradZip, to accelerate dis-
tributed deep learning by minimizing the communication overhead. Unlike the
popular sparsification-based compression techniques, GradZip performs dense
compression based on alternating matrix-decomposition tailored for deep learning.
Therefore, the compressed gradient can be directly communicated and reduced
through the standard collective all-reduce available in most high-performance
deep learning frameworks. The key insight is that all the learners will have a
synchronized tensor from the last all-reduce in training which can be exploited to
obtain high-quality gradient factorization very efficiently in the subsequent itera-
tion. When GradZip used with an industry-leading all-reduce, it delivers significant
compression performance: 100x compression and 5x training speedup with small
accuracy loss of 0.22% for ResNet50 with half-precision quantization.

1 Introduction

One approach to address the communication bottleneck in distributed deep learning is a faster
synchronization algorithm, such as widely used collective all-reduce operations [33} 4] 13|34, 8}
17,127]. The other approach is a compression algorithm to reduce the traffic volume by quantization
and/or sparsification [5}123],137, (3,138, [32]]. Although the two approaches mentioned above have the
same goal, they cannot be easily integrated into one effective solution because the two are designed
to work on different data representations. All real-world collective operations are designed for dense
computation, while quantization followed by sparsification relies on sparse representation [16].

Consider in Fig. [T](a) where two sparsely represented and already compressed gradients from different
learners (on the left) to be reduced during all-reduce where each element is denoted as a pair of indices
and values (which is a generalization of sparse-encoding). Then, we can see the following issues: a)
It is complex to map the scattered index-value pairs across two compressed representations [31], as
the row-by-row operation is not permissible. Therefore, it is required to check and locate its position
if necessary. For instance, while (1, 3) from both can be reduced directly, (10, 4) has no counterpart
to be added and (17, 5) has one, but on a different row. b) It is required to handle the overflow after
reduction. As on the bottom in Fig.[I] (a), it is likely that the size of the initial reduction is larger than
the contracted all-reduce size (which is 6 in this example). Thus, either a thresholding scheme or a
top-K selection is needed [[12} 31} 2 23]]. For example, (18,2) and (27, 1) need to be dropped with a
threshold 3 or top-6 selection. ¢) When a top-K algorithm with a linear complexity is used [23} 31],
matching indices would be harder, because the outcome is not guaranteed to be sorted.

Such incompatibility issues arise from the fact that the collective operation standard [25]] is defined to
handle dense data representation and becomes a dominating data-parallel back-end [25] 27} |8}, 34,
17, [13l], while sparse gradient compression is popularly researched due to the inherent sparsity of
gradient tensors [} 23] and has been targeting a parameter-server architecture [5} [22]]. To address
such challenge, we propose GradZip, which is based on alternating matrix factorization enabled by
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Figure 1: Comparison between sparse gradient compression and GradZip for all-reduce. Solid and
dotted lines represent dense and sparse formats, respectively.

the nature of distributed deep learning. GradZip utilizes the factorization results from the previous
synchronization to deliver high-quality gradient factorization for the current synchronization. The
matrix factorization inherently outputs a compressed gradient in dense representation, hence the
compatibility issue between compression andall-reduce no longer exists.

2 GradZip

The key idea in GradZip is to compress a gradient tensor into a dense representation so that the
compressed output can be directly aggregated using the standard all-reduce. Fig.[I] (b) and (c)
highlight the key benefits of GradZip over sparse gradient compression for all-reduce. As discussed
in Section [T} using sparse representation along with all-reduce is complicated as shown in Fig.[T] (b),
where expensive temporary format conversion (i.e., decompress-reduce-compress) steps are repeated
in every reduction along with ad-hoc threshold knobs and/or top-K selection [22] [12]. On the other
hand, GradZip in Fig.[I] (c) compresses the gradient into a size-controlled dense format which is
readily reducible with any standard all-reduce libraries. Such simplicity will greatly promote its
adoption and integration into deep learning frameworks [28l |1} /1826, |6] and preserve the performance
benefits of highly-optimized all-reduce implementations [34, |27, |8].

GradZip is based on matrix-factorization where a data representation is factorized into a set of much
smaller ones [9, 14} 24, 21]]. For a learner x in data-parallel training, factorizing a gradient tensor
G, at (i)-th iteration can be described as follows:

ymin (GG = UGV I+ AU 1E + IV I1E) (1)
i)’ (7)

where Gfi) e Rmxm™ U(’;) € Rm™xk, V(f) € RF*™ and k is a latent variable that captures the
underlying low-rank structure in G(Ii) and a hyper-parameter to tune the degree of compression
at the same time. Gradient compression based on matrix factorization can have the following
benefits: a) The factorization results are in dense representation which can be directly used for
collective operations such as all-reduce. b) The output size is exactly controlled by a desired k,
unlike sparsification where additional steps are needed (i.e., top-K selection or thresholding). ¢) The
computation can be done by dense BLAS which can be highly efficient on GPUs where training is
already running [[10} [7]. Even though the benefits from dense representation are obvious, solving
Eq. (1) for the gradient compression purpose is not trivial and faces the following two challenges: a)
Eq. (1) is a non-convex optimization problem, thus computationally too expensive to be solved for
gradient compression. b) Even if Eq. (I) could be instantly optimized out, the communication pattern
to utilize U(”‘;.) and V(f) is not scalable: allgather-broadcast (i.e., parameter server) (35| or all-to-all.

Fig. 2] (b) elaborates the second challenge where the gradient tensors are factorized in the three
learners L = {x,y, z}. After obtaining high-quality factorization results, computing >, U (f”i) and

D ozel V(f) through all-reduce is not helpful, as there is no easy way to reconstruct the approximated
D ozel GE’;) with such aggregated results. In fact, it becomes necessary to share each U (zi) and V(f)
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Figure 2: GradZip to accelerate all-reduce with the universally same matrix across all the learners.

individually within L so that each learner can compute ), U, (xi)V(f) independently, which is very
inefficient and costly. We observed that the above challenges can be nicely addressed if either V(f) or
U (wi) is fixed and somehow identical in L, which is depicted in Fig. |Z| (b).

e Eq. (I) is a convex problem [14] [19], once either matrix is fixed. Thus, the other

matrix can be computed optimally by solving the following linear systems. With a fixed

and identical V) assumed for simplicity, U, can be obtained by solving (V(f) ViyT +
AUGT = VG GiyTor (UG TUG + )\I)V?) = U{;)TG{;) where X is a parameter to

K2

regularize U(Z) Fig.|2 (b) illustrates the case where 3 learners, L = {x,y, z} are factorizing
G gg,y,z} in parallel with a fixed and identical V in grey.

o With V( being identical across L, only >, l) is required to reconstruct ) | Gfi)
which is naturally mapped to all-reduce as in Fig. I (). As> .U fi) incurs less network
traffic than > __, G ( ) the proposed matrix factorization for gradient compression will
accelerate distributed SGD [36), 3], 23] 3]].

To ensure the same V(f across L, GradZip reuses the last all-reduce result as a fixed V' as shown in
Fig.[2|(c), which leads to alternating gradient factorization. In distributed SGD, the gradients could be
highly correlated in a sense that successive gradients are laid in a proximity with similar characteristics
like curvatures [30]]. In that sense, it is very probable that the previous factorization result could be
helpful in solving the future factorization problems. It would be possible to use a moving average
scheme instead of simply using the last one as well, but at the cost of a larger memory footprint.

. . _ . .. uncompressed_size __ _ 2mn
Finally, for a given hyper-parameter k, the compression rate is compressed_size . = (man)k"

3 Experimental Results

We implemented GradZip for GPU in C++ with a GPU BLAS library [10] and integrated into
PyTorch 1.1 [28]. We used eight linux nodes in a cloud platform for our experiments. Each node
has two Nvidia V100 GPUs and networked via 10 Gbps Ethernet. For all-reduce, we used the
latest NCCL2 [27]. All the tensors including gradients are computed in single-precision (FP32).
We experimented the all-reduce ready compression techniques in Table [I] We did not explore
other lower-bit quantization techniques except half-precision (FP16) as the latest NCCL2 and GPU
do not support any non-standard format. With FP16, all schemes offer 2x additional bit-wise
compression.We trained AlexNet and ResNet50 [20), with ImageNet1K [I1] to evaluate different
compression schemes for all-reduce. Each training job ran for 90 epochs with a mini batch-size of 32
per GPU [23] 3]]. The initial learning rate was scaled down by 10x every 30 epochs, following the
standard practice. The momentum and the weight-decay were set as 0.9 and 1E-04, respectively.

Fig.[3|(a) and (b) show the performance and training throughput of training instances with different
compression schemes. In Fig.[3|(a) runtime is separated into compute and SGD for a single iteration
(i.e., in-between weight update) of ResNet50 training. The per-iteration computation time is indepen-
dent of the number of learners, so we extracted the pure computation time by running a training job
on a single GPU for the given batch size (which is about 0.118 sec). The SGD time is obtained by
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Table 1: Algorithms evaluated in this paper.
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Figure 3: GradZip performance results on ImageNet1K training.

subtracting the single GPU compute time from the per-iteration time. Therefore, the SGD measures
include all synchronization overheads, including extra memory operations and imbalance among the
GPUs and node (which we refer to as jitter).

Fig. 3] (a) clearly shows that compression reduces the SGD overhead: both Baseline-
FP16, SparCML, and GradZip all accelerated training to varying degrees. However, the
overall speedup gets saturated once it passes 40x compression due to Amdahl’s law, where
GradZip-40-FP32 is 2x faster than SparCML-40-FP32. The overhead in SparCML-
40-FP32 mainly comes from the need to compare indices to detect overlaps before the
reduction.

Fig. 3] (b) shows throughput improvements due to faster per-iteration-time. Again, we
observed speedup saturation around 40x compression, and GradZip-40-FP32 delivers
4.8 speedup over the Baseline-FP32.

Based on the throughput results, we trained AlexNet and ResNet50 with mainly a 40 x compression

target to

study the impacts of compression on the final test accuracy as shown in Fig.[3](c) and (d).

For ResNet50 in Fig. [3](d), Baseline-FP32 yielded a 75.49% accuracy while GradZip-40-
FP32 delivered 75.17%. Lowering the compression ratio to 10x with GradZip-10-FP32
only marginally improved the accuracy to 75.19%. However, with GradNA-10-FP32, the
training barely converges to 64.65%, reconfirming the effectiveness of alternating gradient
factorization.

GradZip-50-FP16 (100x end-to-end compression) offered negligible accuracy drop from
Baseline-FP32 (0.22% ), confirming GradZip’s compatibility with quantization schemes.

Across all the tests, we were able to see the gradient staleness effect in the first 30 epochs as
observed by [3]], which can be mitigated by known techniques [23].
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