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Abstract

Deep Learning (DL) algorithms are the central focus of modern machine learning
systems. As data volumes keep growing, it has become customary to train large
neural networks with hundreds of millions of parameters with enough capacity
to memorize these volumes and obtain state-of-the-art accuracy. To get around
the costly computations associated with large models and data, the community
is increasingly investing in specialized hardware for model training. However,
specialized hardware is expensive and hard to generalize to a multitude of tasks.
The progress on the algorithmic front has failed to demonstrate a direct advantage
over powerful hardware such as NVIDIA-V100 GPUs. This paper provides an
exception. We propose SLIDE (Sub-LInear Deep learning Engine) that uniquely
blends smart randomized algorithms, with multi-core parallelism and workload
optimization. Using just a CPU, SLIDE drastically reduces the computations
during both training and inference outperforming an optimized implementation
of Tensorflow (TF) on the best available GPU. Our evaluations on industry-scale
recommendation datasets, with large fully connected architectures, show that
training with SLIDE on a 44 core CPU is more than 3.5 times (1 hour vs. 3.5 hours)
faster than the same network trained using TF on Tesla V100 at any given accuracy
level. On the same CPU hardware, SLIDE is over 10x faster than TF. We provide
codes and scripts for reproducibility.

1 Introduction

Vast amounts of data powered by the exponential increase in computing capabilities have been
instrumental in the success of DL. More notably, with the advent of the powerful Graphic Processing
Unit (GPU) [[14], training processes have been drastically accelerated. Nevertheless, we are now
reaching a limit beyond which there are fewer hopes of obtaining better speedups in fundamental
operations like matrix multiplication. Furthermore, the need for astronomical size neural networks and
unprecedented growth in the data volumes have worsened this problem. As a result, the community
is heavily investing in dedicated hardware to take DL further beyond this point [6].

Exploiting Adaptive Sparsity in Neural Networks: In popular frameworks like Tensorflow (TF),
Sampled Softmax [5] is deployed to estimate the full softmax efficiently. While sampled softmax
offers computational savings, it has high estimation bias [3]]. This leads to poor convergence behavior
which is empirically verified in our experiments in section[d] In this paper, we will exploit the idea of
adaptive sparsity [3] or adaptive dropouts [[1]. The idea stems from several recent observations [ 12} [11]]
that we can accurately train neural networks by selectively sparsifying most of the neurons, based
on their activation, during every gradient update. [17] has also shown that selective sparsification
can in-fact be superior in accuracy due to implicit regularization. However, selective sparsification
does not directly lead to computational savings. [16] shows the first possibility of an algorithmically
efficient solution by employing Locality Sensitive Hash (LSH) tables to identify a sparse set of
neurons efficiently during each update. The proposed algorithm has an added advantage of making
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Figure 1: Architecture: The central module of SLIDE is Network. The network is composed of
few-layer modules. Each layer module is composed of neurons and a few hash tables into which the
neuron ids are hashed.

the gradient update HOGWILD style [15]] parallel. Such parallelism does not hurt convergence
because extremely sparse and independent updates are unlikely to overlap and cause conflicts of
considerable magnitude. Despite all the niceness presented, current implementation of [16] fail to
demonstrate that the computational advantage can be translated into a faster implementation when
directly compared with hardware acceleration of matrix multiplication. In particular, it is not clear if
we can design a system that can effectively leverage the computational advantage and at the same
time compensate for the hash table overheads using limited (only a few cores) parallelisms. In this
paper, we provide the first such implementation for large fully connected neural networks.

1.1 Our Contributions
Our main contributions are as follows:

o We show the first C++ OpenMP based system SLIDE with modest multi-core parallelism on
a standard CPU that can outperform the massive parallelism of a powerful V100 GPU on a
head-to-head time-vs-accuracy comparison.

e We make several novel algorithmic and data-structural choices in designing the LSH based
sparsification to minimize the computational overheads to a few memory lookups only (truly O(1)).
At the same time, it does not affect the convergence of the DL algorithm.

e We provide a rigorous evaluation of our system on two large benchmark datasets involving fully
connected networks and show that SLIDE, on a modest CPU can be up to 3.5x faster, in wall clock
time, than the best possible alternative with the best possible choice of hardware, at any accuracy.
We perform a CPU-efficiency analysis of SLIDE using Intel VTune Performance Analyzer and
show that memory-bound inefficiencies reduce for SLIDE with an increasing number of cores
while it is the opposite for TF-CPU.

e Our analysis suggests that SLIDE is a memory-bound application, prone to some bottlenecks
described in section[3] With careful workload and cache optimizations (eg. Transparent Hugepages)
and a data access pattern (eg. SIMD instructions), we further speed up SLIDE by roughly 1.3x,
making the overall speed up to 3.5x faster than TF-GPU and over 10x faster than TF-CPU.

2 Proposed System: SLIDE

Before introducing SLIDE in details, we define important notations: 1) B: input batch size 2) N lj :
Neuron j in layer [ 3) z;: inputs for layer [ in the network 4) w{*: weights for a*" neuron in layer [ 5)
hy: hash functions in layer [ 6) IV;*: the set of active neurons in layer [ for the current input.

Initialization: Figure|l|shows the modular structure of SLIDE. Every layer object contains a list of
neurons and a set of LSH sampling hash tables. Each hash table contains ids of the neurons that are
hashed into the buckets. During the network initialization, the weights of the network are initialized
randomly. After weight initialization, K x L LSH hash functions are initialized along with L hash
tables for each of the layers. For instance, the example network in Figure T[] maintains hash tables in
two hidden layers as well as the output layer. The LSH hash codes h;(wj') of the weight vectors of
neurons in the given layer are computed according to the hash functions. The id a of the neuron are
saved into the hash buckets mapped by the LSH function A;(w{*). This construction of LSH hash
tables in each layer is a one-time operation which can easily be parallelized with multiple threads
over different neurons in the layer independently.

Sparse Feed-Forward Pass with Hash Table Sampling: In the feed-forward phase, given a single
training instance, we compute the network activation until the final layer, which gives us the output.



In SLIDE, instead of calculating all the activations in each layer, the input to each layer z; is fed
into hash functions to compute h;(x;). The hash codes serve as a query to retrieve ids of active (or
sampled) neurons from the matching buckets in hash tables. Only the activations of active neurons
are calculated and passed on as the inputs to the next layer. The other activations, are directly treated
as 0 and never computed.

The above-described operations are performed sequentially in every layer, starting from the very first
layer where the input is the data itself. Even in the output layer, which has softmax activation, only
neurons sampled from hash tables are treated as active neurons. For softmax, for every active neuron,
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longer the sum over all neurons but only the active ones.

Sparse Backpropagation or Gradient Update: The backpropagation step follows the feed-forward
step. After computing the output of the network, we compare it with the known label of the input
and backpropagate the errors layer-by-layer to calculate the gradient and update the weights. Here
we used the classical backpropagation message passing type implementation rather than vector
multiplication based. For every training data instance, after updating the weights of any given neuron,
the neuron propagates the partial gradients (using error propagation) back to only active neurons in
previous layers via the connected weights. As a result, we never access any non-active neuron or
any non-active weight, which is not part of the feed-forward process on a given input. The process
ensures that we take full advantage of sparsity. Our computation over each input is only of the order
of active neurons and weights rather than the total number of parameters. It should be noted that if
we compute activation for s < 1 fraction of neurons in each layer (on an average), the fraction of
weights that needs to be updated is s> only, which is a significant reduction when s is small (as is the
case for our experiments).

OpenMP Parallelization across Training Instances in a Batch: For any given training instance,
both the feed-forward and backpropagation operation are sequential as they need to be performed
layer by layer. SLIDE uses usual Batch Gradient Descent with ADAM optimizer, where the batch
size is generally in the order of hundreds. Each data instance in the batch runs in a separate thread and
its gradients are computed in parallel. To ensure the independence of computation across different
threads, every neuron stores two additional arrays, each of whose length is equal to the batch size.
These arrays keep track of the input specific neuron activations and error gradients. Every input is
assigned an id, which can be used as an index to locate its activation (or error gradient) on any neuron.
Besides, we also have a bit array at each neuron to determine whether the particular input activates a
neuron or not. This small memory overhead is negligible for CPUs as they have abundant memory.
But it ensures that the gradient computation is independent across different instances in the batch.

The extreme sparsity and randomness in gradient updates allow us to asynchronously parallelize the
accumulation step of the gradient across different training data without leading to a considerable
amount of overlapping updates. SLIDE heavily capitalizes on the theory of HOGWILD [[15]] which
shows that a small amount of overlap is tolerable. It does not hurt the convergence even if we
resolve the concurrent updates randomly. Thus, after independently computing the gradients, each
thread pushes the updates directly to the weights asynchronously. This asynchronous update avoids
synchronization during batch accumulation which is otherwise sequential in the batch.

3 Threading Model and Platform Micro-architecture Optimization

Our experimental analysis shows that SLIDE is a memory-bound workload. We show that a careful
workload optimization to design a threading model and a data access pattern to take into consideration
the underlying platform architecture leads to a significant performance boost.

Cache Optimizations: A key metric for the identification of memory and cache performance
bottlenecks in a multi-threaded application, e.g., SLIDE, is the number of data misses in the core
private caches. This is a significant source of coherence traffic, potentially making the shared bus a
bottleneck in a symmetric multiprocessor (SMP) architecture, thus increasing memory latency.

CPU caches are arranged into cache lines. Multiple threads updating data items that happen to
co-locate into the same cache line (called false sharing) can also cause cache thrashing, since these
updates need to be serialized to ensure correctness, leading to performance degradation. Much



previous work (e.g., [18]) have tried to detect and resolve the issue of false sharing for OpenMP
multi-threads mainly using compiler optimizations and hardware performance counters. However,
generally speaking, carefully allocating data structures and aligning them on cache line boundaries
(e.g., by padding) significantly reduce the false sharing opportunities. We chose to use the later
alternative for SLIDE.

Address Translation and Support for Kernel Hugepages: Virtual memory provides applications
with a flat address space and an illusion of sufficiently large and linear memory. The addressed
memory is divided into fixed-size pages, and a page table is used to map virtual pages to physical
ones. The address lookup is accelerated using Translation Lookaside Buffers (TLBs).

Since SLIDE is a workload with a large memory footprint, the performance of virtual memory paging
can suffer due to stagnant TLB sizes. TLB address translation is on the processors critical path. It
requires low access times which constrain TLB size (and thus, the number of pages it holds). On a
TLB miss, the system must walk the page table, which may incur additional cache misses. Recent
studies show that workloads with large memory footprints can experience a significant performance
overhead due to excessive page table walks [7, 2].

We employ Hugepages for SLIDE, which is a technology for x86-64 architectures to map much
larger pages than the default 4KB normal-sized pages on the orders of 2 MB to 1 GB. Use of huge
pages (Transparent Hugepages and libhugetlbfs [4]]) increases TLB reach substantially, and reduces
the overhead associated with excessive TLB misses and table walks.

Vector Processing, Software Pipelining, and Prefetching: We further use software optimization
techniques to improve workload performance in SLIDE. In particular, we use Vector processing
which is capable of exploiting data-level parallelism through the use of Single-Instruction-Multiple-
Data (SIMD) execution, where a function is called with a batch of inputs instead of an individual
input (e.g., the function to update a large matrix of weights in the back-propagation phase). The
implementation uses SIMD instructions (e.g., Intel AVX [9]) to implement the update to multiple
weights simultaneously. Implementing a software pipeline is an excellent way to hide memory latency
for memory-bound workloads. Our implementation divides the processing of data items into stages of
a pipeline, where explicit software prefetch stage (using, for example, x§6 PREFETCHTO instruction
set) is followed by a processing stage(s). The data items that are accessed in the future are prefetched
into the core caches in advance to the time when they are needed to get processed. In particular, for a
vector processing of updating of N weights, a software implementation can prefetch weight W, 4
(where d is the depth of the pipeline) while updating weight W;, as a result, when it is time to process
weight W, 4 it is already in the CPU cache.

4 Evaluations

In this section, we’re going to empirically investigate SLIDE’s performance against TF-GPU with
V100s and TF-CPU. Our first goal is to evaluate the basic structure of the system thoroughly. Hence
for the first part, we do not include the optimization described in sectionE} Later, we will show the
overall gains obtained by leveraging Threading Model and Platform Micro-architecture in section

Datasets: To show SLIDE’s real advantage, we’ll need large networks where even a slight decrease in
performance is noticeable. Thus, the publicly available extreme classification datasets [10], requiring
more than 100 million parameters to train due to their extremely wide last layer, fit this setting
appropriately. For these tasks, most of the computations (more than 99%), is in the final layer. We
employ two large real datasets; Delicious-200K and Amazon-670K and train feed-forward networks
with large output spaces (200K and 670K respectively).

Infrastructure: All the experiments are conducted on a server equipped with two 22-core/44-thread
processors (Intel Xeon E5-2699A v4 2.40GHz) and one NVIDIA Tesla V100 Volta 32GB GPU.
The server has an Ubuntu 16.04.5 LTS system with the installation of TF-GPU 1.12. We compiled
TF-CPU 1.12 from source with GCC5.4 in order to support FMA, AVX, AVX2, SSE4.1, and SSE4.2
instructions. This boosts the performance of TF-CPU by about 35%. SLIDE is written in C++ and
compiled under GCC5.4 with OpenMP flag. The most exciting part is that SLIDE only uses vanilla
CPU thread parallelism and yet outperforms TF-GPU (V100) by a large margin in performance.

Hyper Parameters: For both the datasets, we adopt the same model architecture in [[19]. We choose
the standard fully connected neural network with one hidden layer of size 128. We choose a batch
size of 128 for Delicious-200K dataset and 256 for Amazon-670K dataset as the input dimension
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Figure 2: Comparison of SLIDE (in red) against TF-GPU (in blue) and TF-CPU (in black). The
x-axis is plotted in log scale to accommodate the otherwise slow TF-CPU curve. We notice that the
time required for convergence is 2.7x lower than that of TF-GPU.

for the former is very large. We run all algorithms until convergence. To quantify the superiority of
SLIDE over other baselines, we also use the same optimizer, Adam [8] by varying the initial step size
from le~® to 1e~2 which leads to better convergence in all experiments. For SLIDE, we maintain
the hash tables for the last layer, where we have a computational bottleneck of the models (owing
to a large number of classes). For specific LSH setting, we choose Simhash, K = 9, L = 50 for
Delicious dataset and WTA hash, K = 8, L = 50 for Amazon-670k dataset. We update the hash
tables with an initial update period of 50 iterations with an exponential decay.

Main Results: We show the time-wise and iteration-wise comparisons for SLIDE vs TF GPU/CPU
in Figure 2| Note that the z-axis is in log-scale, and all the curves have a long flat converged portion
when plotted on a linear scale indicating clear convergence behavior. Red, blue and black lines
represent the performance of SLIDE, TF-GPU, TF-CPU, respectively. We can see from the plots
that SLIDE on CPU achieves any accuracy faster than TF on V100 demonstrating the superiority
of SLIDE. TF-GPU is always faster than TF-CPU which is expected. It should be noted that these
datasets are very sparse, e.g., Delicious dataset has only 75 non-zeros on an average for input features,
and hence the advantage of GPU over CPU is not always straight-forward. SLIDE can be around
1.8 times faster than TF-GPU on Delicious 200k. On the larger Amazon 670k dataset, where we
need more computations, the gains are substantially more. SLIDE is around 2.7 (2 hrs vs. 5.5 hrs)
times faster than TF-GPU. Most of the computational benefits of SLIDE come from sampling a
small subset of active neurons in the output layer. After a few iterations into the training process, the
average number of neurons sampled in the output layer for Delicious-200K is ~ 1000. Similarly,
for Amazon-670K, we sample = 3000 neurons. With fewer than 0.5% of active neurons, SLIDE
outperforms TF-GPU on time by a huge margin on either dataset. It is interesting to note that even
after compiling TF-CPU with AVX2 instructions, it is nowhere close to the performance of SLIDE or
TF-GPU (SLIDE is 8x faster than TF-CPU). Therefore, it is exciting to note that without any rigorous
optimization in our prototype, SLIDE outperforms both baselines using smart randomized algorithms
with OpenMP parallelism.

For Iteration vs. Accuracy plots in Figure Tersafou 2 s o U Use SUDE efidercs o U s
we can observe that SLIDE achieves the same
accuracy per iteration even though it adaptively |, 0
selects neurons in some layers. This observa- « 0
tion also confirms that adaptively selecting neu-
rons and performing asynchronous SGD does 0; | [ | D; ] [ -

not hurt the convergence from an optimization Bes Gttt Bt T 2t
perspective. The plot also confirms that the ad- o b et Whoibond Mo s errghansF e
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whistles in the optimization process as the con- Figure 3: Inefficiencies in CPU Usage: Memory-
vergence with iteration has very similar behay- bound inefficiencies (orange bars) are the most
jor. For this plot, we only show TF-GPU as significant ones for either algorithm. For TF-CPU,
TF-CPU would also lead to the same plot as memory-bound inefficiency rises with an increas-
the optimization algorithm is the same. Since ing number of cores. For .SLIDE; the memory
SLIDE performs much fewer computations and bottleneck reduces with an increasing number of
memory accesses on the last layer, each iteration ~cores. Hence, SLIDE takes better advantage of
is faster than the baselines. This is the critical ~higher CPU cores.

reason why SLIDE outperform other baselines

when compared on wall-clock time.

Inefficiency Diagnosis: We profile and analyze TF-CPU and SLIDE by a state-of-the-art parallel
performance analyzer tool, the Intel VTune Performance Analyzer [13]. We observe that with 8§,



16, 32 threads for the above tasks, for TE-CPU, the core utilization is generally low (< 50%) and
decreases with more threads;for SLIDE, the utilization is stable (around 80%) across all number of
threads.

Figure [3] presents the distribution of inefficiencies in CPU usage for TF-CPU and SLIDE. Based
on core utilization, the overall inefficiencies of TF-CPU is much more than those of SLIDE in
general. Thus the distribution in figure [3]is based on those inefficiencies. It is obvious that being
memory-bound is a major issue for all number of threads in the histogram. The biggest bottleneck
is that the significant fraction of execution pipeline slots is stalled due to demand memory load and
store. Observe that the higher the number of threads TF-CPU uses, the more memory-bound it gets.

On the other hand, the higher the number of threads SLIDE uses, the less memory-bound it becomes.
Recall that the critical advantage of SLIDE is that it has a lot fewer active neurons and sparse gradient
updates. Naturally, memory accesses are a lot fewer than TF-CPU due to very sparse memory
accesses within each thread. Our choice of using extra arrays to separate the computations of each
thread with asynchronous gradients updates (section [2)) across all the threads ensures that simple
OpenMP parallelism is sufficient to get near-peak utilization.

4.1 Doubling the Speedup with Threading Model and Platform Micro-architecture

For our experiments, we first install
Hugepages package for Ubuntu, which
offers 2MB and 1GB pages. We pre-
allocate 1000 2MB Hugepages and 10 1GB

Amazon-670K Delicious- 200K

Zois //

Hugepages which is found to be enough
for both Delicious-200K and Amazon-670K
datasets. Recall the issue of the false sharing
for OpenMP mutli-thread. We reduce it by
giving a provision to our data structures to
align on cache line boundaries. Besides us-
ing Hugepages, we also used SIMD instruc-
tions (specifically, Intel-AVX) to facilitate
per thread batching. In figure 4] we com-
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Figure 4: Impact of Hugepages and SIMD Optimiza-
tion: The comparison of training time for optimized
version of SLIDE against a plain version of SLIDE
and TF-GPU. We can see that SLIDE-Optimized is
roughly 1.3x faster than the un-optimized one on both

pare the benefit of aforementioned optimiza-
tions against an un-optimized SLIDE and
TF-GPU. We notice that Cache-Optimized
SLIDE (in green) is ~ 1.3 times faster than basic SLIDE (in red). Since we already have a 2.7x
speed-up over TF-GPU on Amazon-670K, it translates to 3.5x speedup over TF-GPU and a 10x
speedup over TF-CPU.

datasets (x-axis is log scale)

4.2 Measuring the Impact of Transparent Hugepages

A direct benefit of employing Transparent Hugepages is the drastic reduction in TLB miss rate. In
our implementation, TLB load miss rate for data reduces from 5.12% to 0.25%. Similarly, TLB
load miss rate for instruction also decreases from 56.12% to 20.96%. Consequently, we expect a
huge reduction in page table walks (PTW) incurred due to TLB misses. We corroborated this fact by
observing a reduction in ratios of CPU cycles spent by PTWs caused by data and instruction TLB
misses from 7.74% to 0.72% and 0.02% to 0.015% respectively. As mentioned in section[3} TLB
misses cause expensive main memory reads. Using Hugepages, we reduce the memory reads caused
by data and instruction TLB misses from 3,062, 039/s to 749, 485/s and 12,060/s and 11, 580/ s
respectively. Finally, we also report the reduction in page faults (which can possibly occur when
there is a TLB miss) from 32, 548 /s to 26,527/ s.

5 Conclusion

We provide the first evidence that a smart algorithm with modest CPU OpenMP parallelism can
outperform the best available hardware NVIDIA-V100, for training large deep learning architectures.
Our system SLIDE is a combination of carefully tailored randomized hashing algorithms with the
right data structures that allow asynchronous parallelism. We show up to 3.5x gain against TF-GPU
and 10x gain against TF-CPU in training time with similar precision on popular extreme classification
datasets.
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