
A Programming System for Model Compression

Vinu Joseph
University of Utah
vinu@cs.utah.edu

Saurav Muralidharan
NVIDIA

sauravm@nvidia.com

Animesh Garg
University of Toronto, NVIDIA

garg@cs.toronto.edu

Michael Garland
NVIDIA

mgarland@nvidia.com

Ganesh Gopalakrishnan
University of Utah

ganesh@cs.utah.edu

Abstract

Deep neural networks frequently contain far more weights, represented at a higher
precision, than is required for the specific task which they are trained to perform.
Consequently, they can often be compressed using techniques such as weight
pruning and quantization that reduce both model size and inference time without
appreciable loss in accuracy. Compressing models before they are deployed can
therefore result in significantly more efficient systems. However, while these bene-
fits are desirable, finding the best compression strategy for a given neural network,
target platform, and optimization objective often requires extensive experimenta-
tion. Moreover, finding optimal hyperparameters for a given compression strategy
typically results in even more expensive, frequently manual, trial-and-error explo-
ration. In this paper, we introduce a programmable system for model compression,
called CONDENSA. Users programmatically compose simple operators, in Python,
to build complex compression strategies. Given a strategy and a user-provided
objective, such as minimization of running time, CONDENSA uses a novel sample-
efficient constrained Bayesian optimization-based algorithm to automatically infer
optimal sparsity ratios. Our experiments on three real-world image classification
and language modeling tasks demonstrate memory footprint reductions of up to
65× and runtime throughput improvements of up to 2.22x using at most 10 samples
per search.

1 Introduction
Modern deep neural networks (DNNs) are complex, and often contain millions of parameters spanning
dozens or even hundreds of layers [24, 29]. This complexity engenders substantial memory and
runtime costs on hardware platforms at all scales. Recent work has demonstrated that DNNs are often
over-provisioned and can be compressed without appreciable loss of accuracy. Model compression
can be used to reduce both model memory footprint and inference latency using techniques such
as weight pruning [23, 39], quantization [19], and low-rank factorization [30, 10]. Unfortunately,
the requirements of different compression contexts—DNN structure, target hardware platform, and
the user’s optimization objective—are often in conflict. The recommended compression strategy for
reducing inference latency may be different from that required to reduce total memory footprint. For
example, for a Convolutional Neural Network (CNN), the former strategy may prune convolutional
filters [36], while the latter may prune individual non-zero weights. Similarly, even for the same
optimization objective, say reducing inference latency, one may employ filter pruning for a CNN, while
prune 2D blocks of non-zero weights [18] for a language modeling network such as Transformer [52],
since the latter has no convolutional layers. Thus, it is crucial to enable convenient expression
of alternative compression schemes, yet none of today’s model compression approaches help the
designer tailor compression schemes to their needs.

Preprint. Under review.
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Figure 1: Top-1 accuracy (green) and
Throughput (red) vs. sparsity ratio for VGG-
19 on CIFAR-10. CONDENSA framework is
designed to solve for constrained optimiza-
tion of the form “maximize throughput, with a
lower bound on accuracy". In this case, CON-
DENSA automatically discovers a sparsity ra-
tio (vertical dashed line) and compresses the
model to this ratio, improving throughput by
2.17× and accuracy by 0.5%.

Current approaches to model compression also re-
quire manual specification of compression hyperpa-
rameters, such as the target sparsity ratio, which is
the proportion of zero-valued parameters in the com-
pressed model vs. the original. Finding the best spar-
sity ratio often becomes a trial-and-error search in
practice, since compression hyperparameter values
vary unpredictably with changes in the compression
context. This makes it difficult to provide users with
a rule of thumb, much less a single number, to apply
when faced with the need to select a hyperparameter
value. Each trial in this approach has a huge cost
(hours or days for larger models), as it requires train-
ing the compressed model to convergence, with most
of these manually orchestrated trials ending up in
unmet compression objectives. Thus, automation is
a crucial requirement to support the needs of design-
ers who must adapt a variety of neural networks to a
broad spectrum of platforms targeting a wide range
of tasks.

As an illustration of the level of automation pro-
vided by CONDENSA, consider the problem of im-
proving the inference throughput of VGG-19 [49] on
the CIFAR-10 image classification task [33]. Since
VGG-19 is a convolutional neural network, one way to improve its inference performance on modern
hardware such as GPUs is by pruning away individual convolutional filters [25]. Figure 1 shows
the accuracy and throughput obtained by Condensa on this task. Here, we plot the compressed
model’s top-1 test accuracy and throughput as a function of the sparsity ratio (green and red lines,
respectively).1 Condensa’s solution corresponds to a sparsity ratio of 0.73 and is depicted as the
vertical dashed line. This result is significant for two reasons: (1) using the Condensa library, the
filter pruning strategy employed for this experiment was expressed in less than 10 lines of Python
code, and (2) the optimal sparsity ratio of 0.73 (shown as the vertical dashed line in the Figure) that
achieves a state-of-the-art throughput of 2130 images/sec (2.17× improvement) and a top-1 accuracy
improvement of 0.5% was obtained automatically by Condensa using a sample-efficient constrained
Bayesian optimization algorithm. For this to work, the user didn’t have to specify any sparsity ratios
manually, and instead only had to define a domain-specific objective function to maximize (inference
throughput, in this case).

As captured by this illustration, Condensa supports the expression of the overall compression scheme
in Python using operators provided by the Condensa library. Since each scheme is a Python function,
users are able to programmatically compose elementary schemes to build much more complex and
practically interesting schemes. Condensa accepts a black-box objective function (also expressed
in Python) on the target compressed model that is maximized or minimized to automatically find
corresponding compression hyperparameters such as sparsity ratios. This programmable approach to
model compression enables users to experiment and rapidly converge to an ideal scheme for a given
compression context, avoiding manual trial and error search. Given Condensa’s ability to support the
expression of meaningful high level objective functions—for example, the throughput (images/sec)
of a convolutional neural network—users are freed from the burden of having to specify compression
hyperparameters manually.

2 CONDENSA Framework
Figure 2 shows a high-level overview of the Condensa framework. As shown on the left side of the
figure, a user compresses a pre-trained model w by specifying a compression scheme and an objective
function f . Both the scheme and objective are specified in Python using operators from the Condensa
library; alternatively, users may choose from a selection of commonly used built-in schemes and
objectives. The Condensa library is described in more detail in Section 2.1. Apart from the operator

1Note that these curves are not known a priori and are often extremely expensive to sample; they are only
plotted here to better place the obtained solution in context.

2



CONDENSA FRAMEWORK

BAYESIAN OPT.

OBJECTIVE 

REFERENCE

COMPRESSEDL-C OPTIMIZER

SCHEME

w
<latexit sha1_base64="Gm0D0W5kiKWGlxbQgr5dipbZuAg=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KkkVdFl047KCfUAbymQ6aYdOJmFmYikxn+LGhSJu/RJ3/o2TNgttPTBwOOce7p3jx5wp7Tjf1tr6xubWdmmnvLu3f3BoV47aKkokoS0S8Uh2fawoZ4K2NNOcdmNJcehz2vEnt7nfeaRSsUg86FlMvRCPBAsYwdpIA7vSj4ydp9O+H6TTLBvYVafmzIFWiVuQKhRoDuyv/jAiSUiFJhwr1XOdWHsplpoRTrNyP1E0xmSCR7RnqMAhVV46Pz1DZ0YZoiCS5gmN5urvRIpDpWahbyZDrMdq2cvF/7xeooNrL2UiTjQVZLEoSDjSEcp7QEMmKdF8ZggmkplbERljiYk2bZVNCe7yl1dJu15zL2r1+8tq46aoowQncArn4MIVNOAOmtACAlN4hld4s56sF+vd+liMrllF5hj+wPr8AUAdlKQ=</latexit>

⇥
<latexit sha1_base64="Q9lK32OLh1U5Opq5vZe+Wl1HSas=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V2lpoQ9lsN+3aTTbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNirVjLeYkkp3Amq4FDFvoUDJO4nmNAokfwjGtzP/4YlrI1TcxEnC/YgOYxEKRtFK7V5zxJH2yxW36s5BVomXkwrkaPTLX72BYmnEY2SSGtP13AT9jGoUTPJpqZcanlA2pkPetTSmETd+Nr92Ss6sMiCh0rZiJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ+JOEmRx2yxKEwlQUVmr5OB0JyhnFhCmRb2VsJGVFOGNqCSDcFbfnmVtGtV76Jau7+s1G/yOIpwAqdwDh5cQR3uoAEtYPAIz/AKb45yXpx352PRWnDymWP4A+fzB3RFjww=</latexit>

s
<latexit sha1_base64="8r6dWOvdyfgmPOHEanDSQrmgcis=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpu6XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH3/OM+w==</latexit>

OBJECTIVE

A(s)
<latexit sha1_base64="iid8wRcl6hOwr21s2AKQczsuGuY=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuFfRY9eKxgv2AdinZNNuGJtklyQpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyV3md56o0iySj2YaU1/gkWQhI9hk0k1Vnw/KFbfmzoFWiZeTCuRoDspf/WFEEkGlIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUokF1X46v3WGzqwyRGGkbEmD5urviRQLracisJ0Cm7Fe9jLxP6+XmPDaT5mME0MlWSwKE45MhLLH0ZApSgyfWoKJYvZWRMZYYWJsPCUbgrf88ipp12veRa3+cFlp3OZxFOEETqEKHlxBA+6hCS0gMIZneIU3RzgvzrvzsWgtOPnMMfyB8/kDLZGNqw==</latexit>

w
<latexit sha1_base64="K+iivrhdeUPnWoxmB5CJQNdKl6I=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZlZDCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOYDjP8=</latexit>

f(w)
<latexit sha1_base64="qtcsMWwgmCTSn7feqRE8a+tEAoI=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuFfRY9OKxgv2AdinZNNuGJtklySpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSrte8i1r9/rLSuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbCiN1A==</latexit>

f
<latexit sha1_base64="aj1VrWgqSrqkgqJ/bLgtsTmRK/w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtgvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPzD+M7g==</latexit>

f
<latexit sha1_base64="aj1VrWgqSrqkgqJ/bLgtsTmRK/w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtgvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPzD+M7g==</latexit>

Figure 2: CONDENSA framework overview. The user provides the pre-trained model (w), a compres-
sion scheme, and an objective function f . CONDENSA uses the Bayesian and L-C optimizers to infer
an optimal sparsity ratio s∗ and corresponding compressed model Θ.

library, the core framework, shown in the middle of the figure, consists primarily of two components:
(1) the constrained Bayesian optimizer for inferring optimal sparsity ratios, and (2) the L-C optimizer
for accuracy recovery. These components interact with each other as follows: at each iteration, the
Bayesian optimizer samples a sparsity ratio s, which is fed into the L-C optimizer. The L-C optimizer
distributes this global sparsity across all the layers of the network and performs accuracy recovery
(this process is described in more detail in Section 2.2), passing the final obtained accuracy A(s) back
to the Bayesian optimizer. The compressed model w obtained by the L-C optimizer is also used to
evaluate the user-provided objective function f , the result of which is fed into the Bayesian optimizer.
Based on these inputs (A(s) and f(w)), the Bayesian optimizer decides the next point to sample. The
sparsity ratio that satisfies both the accuracy and objective constraints (s∗) is used to obtain the final
compressed model (denoted as Θ in the figure). The L-C and Bayesian optimizers are described in
more detail in Sections 2.2 and 2.3, respectively, and the sparsity inference algorithm is presented in
Algorithm 1.

Algorithm 1 Bayesian Hyperparameter Inference
Input: w,ε
Output: s∗
AcqFn← ILS-UCB(L = wacc − ε, s = (0, 1))
sacc ← BayesOpt(Bf = L-C, AcqFn)
AcqFn← GP-UCB(s = (0, sacc))
s∗ ← BayesOpt(Bf = f , AcqFn)

function BayesOpt
Input: Bf , AcqFn
Output: s
GP← GP-Regressor.initialize()
for t← 0, 1, 2, ... do
st ← argmaxsAcqFn(s|D1:t−1)
yt ← f(st)
D1:t ← {D1:t−1, (st, yt)}
GP.Update(D1:t)
if t > 0 and st == st−1 then

return st
end if

end for

2.1 Condensa Library

The Condensa Library provides a set of operators for constructing complex compression schemes
programmatically in Python. Three sets of operators are currently supported: (1) the quantize and
dequantize operators for converting network parameters from a 32-bit floating-point representation to
a lower-precision one such as 16-bit floating-point, and in the opposite direction, respectively; (2) the
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prune operator for unstructured magnitude-based pruning, and (3) the filter_prune, neuron_prune,
and blockprune operators for pruning blocks of nonzeros (structure pruning). Each operator can be
applied on a per-layer basis. A decompression scheme needs to be specified only when at least one
of the operators in the corresponding compression scheme performs quantization, as described in
Section 2.2.

Pre-built Schemes In addition to the layer-wise operators described above, the Condensa Library
also includes a set of pre-built compression schemes that operate on the full model. Condensa includes
schemes for unstructured and structured pruning, quantization, and composition of individual schemes.
These schemes handle a number of low-level details such as magnitude threshold computation from a
sparsity ratio, filter/neuron/block aggregation, etc., enabling non-expert users to quickly get started
with Condensa without knowledge of its low-level implementation details. In the supplementary
material, we have among other details (1) The current set of pre-built schemes is listed, along with
their source code (2) Listing 1 shows example usage of the Condensa library.
2.2 Accuracy Recovery using L-C
As described earlier in this section, given a reference model, compression scheme, and compression
hyperparameter values (obtained automatically by the Bayesian hyperparameter optimization sub-
system described in Section 2.3), Condensa tries to recover any accuracy lost due to compression.
While the compressed model, denoted as Θ, can be obtained by directly zeroing out lower-magnitude
parameters from the reference model w (a technique referred to as direct compression), the resulting
model Θ is generally sub-optimal w.r.t. the loss since the latter is ignored in learning Θ. Instead,
we desire an accuracy recovery algorithm that obtains an optimally compressed model with locally
optimal loss. An effective accuracy recovery mechanism for Condensa must ideally have three
important attributes: (1) able to handle all the compression operators supported by Condensa, (2) be
efficient with relatively low overheads, and (3) provide optimality guarantees whenever possible. In
this paper, we use the recently proposed L-C algorithm [6], since it satisfies all three of the above
requirements. In L-C, model compression is formulated as a constrained optimization problem:
minw,ΘL(w) s.t. w = D(Θ) Here, the decompression mapping D : Θ ∈ RQ → w ∈ RP
maps a low-dimensional parameterization to uncompressed model weights, and the compression
mapping C(w) = argminΘ ‖w −D(Θ)‖2 behaves similar to the inverse of D. This formulation
naturally supports a number of well-known compression techniques. In particular, pruning is defined
as w = D(Θ) = Θ where w is real and Θ is constrained to have fewer nonzero values by removing
(zeroing out) lower magnitude weights; low-precision approximation defines a constraint wi = θi per
parameter where wi is in a higher-precision representation and θi is in a lower-precision one. While a
number of non-convex algorithms may be used to solve the optimization, we focus on the augmented
Lagrangian (AL) method [53] implemented in the L-C algorithm [6]. Due to space restrictions, we
refer the reader to [6] for a more detailed description of the L-C algorithm.
2.3 Bayesian Hyperparameter Optimization
It is intuitive to split the problem of finding optimal sparsity ratios into two stages: (I) find the highest
sparsity value that loses at most ε accuracy w.r.t the original uncompressed model, and (II) in a
constrained sparsity regime obtained from stage I, optimize a user-provided objective function f (for
eg., throughput, memory or footprint) and return the solution as the final sparsity ratio. It is worth
noting that optimizing performance characteristics (accuracy, throughput, and so on) against sparsity
ratios requires access to function f , and often assumes cheap function evaluation. For compression,
each function evaluation can amount to optimizing the full model, is computationally prohibitive.

CONDENSA leverages black-box sample efficient Bayesian optimization to optimize objective f
with accuracy constraints. Bayesian optimization solves for the minimum of a black-box function
f(x) on some bounded set X , which we take to be a subset of RD [42, 31]. BO methods construct
a probabilistic model of f with sequential evaluation, and then exploits this model for sequential
selection of information gathering actions – the choice of x ∈ X . This procedure leverages all
function evaluations instead of only local gradient approximations, and hence is sample efficient even
for non-convex black-box functions [4].

A bayesian optimization algorithm requires two design choices: a prior and an acquisition function.
The prior captures assumptions about smoothness and continuity of function f . While the acquisition
function expresses an utility function over the model posterior for sequential decisions.

Gaussian Process Prior. The Gaussian Process (GP) is a computationally convenient prior distri-
bution on functions that allows for closed form marginal and conditional computations [47]. The
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GP is defined by the property that any finite set of N points {xn ∈ X}Nn=1 induces a multivariate
Gaussian distribution on RN . We assume that the function f(x) is drawn from a GP prior and that our
observations are of the form {xn, yn}Nn=1}, where yn ∼ N (f(xn), ν) and ν is the variance of noise
introduced into the funciton observations. The support and properties of the resulting distribution on
functions are determined by a mean function m : X → R and a positive definite covariance function
K : X × X → R.

Design of Acquisition Function. The GP prior and sequential function evaluations induce a posterior
over function f of interest (eg. throughput, memory or footprint). An acquisition function is the
utility model which guides next best point for function evaluation. Under the Gaussian process prior,
acquisition function depends on the model solely through its predictive mean function µ(x;xn, yn, θ)
and predictive variance function σ2(x;xn, yn, θ). For this discussion, we denote the best current
value as xnext = argminxn

f(xn) and the cumulative distribution function of the standard normal
as Φ(·). The choice of acquisition function depends on the overall problem objective, as illustrated
following. Level-Set Optimization. In addition to unconstrained optimization, to enable CONDENSA
to achieve constraint satification we build on top of level-set black-box optimization [3, 14, 56]. We
leverage a Gaussian Process Adaptive Sampling criterion called Implicit Level Set Upper Confidence
Bound (ILS-UCB) [14], that prioritizes sampling near a level set of the estimate. This algorithm
prioritizes searching the expected LC curve intersection with user accuracy constraints, conditional
on estimated uncertainty, and does not seek to precisely learn the shape of the entire LC curve.
Intuitively, by reducing the estimation space to specifically localize the sparsity that meets user
accuracy constraints, we can reduce the total number of measurements-and consequently the time
required to achieve an optimal value for the sparsity. Hence, rather than prioritizing both high
variance and high mean like UCB, ILS-UCB prioritizes sampling in areas near a level set of the mean
represented by the Gaussian Process Implicit Surface, i.e. to minimize the implicit potential defined
by µ(x)−L, and where the confidence interval is large:xt = argmax

x∈X
(1− γ)σ(x)− γ ∗ |µ(x)−L|

3 Evaluation

We conduct extensive experiments and fully analyze Condensa on three tasks: (1) image classification
on CIFAR-10 [33], (2) image classification on ILSVRC (ImageNet) [9], and (3) language modeling
on WikiText-2 [40]. We optimize the networks in each task for two distinct objectives: (1) minimize
their memory footprint, and (2) maximize their inference throughput.

Image Classification on ImageNet and CIFAR-10 We use the VGG-16 neural network [49]
trained on the challenging ImageNet task [9], specifically the ILSVRC2012 version. We use Py-
Torch [45] and default pretrained models as a starting point. The CIFAR-10 dataset [33] consists
of 50k training and 10k testing 32 × 32 images in 10 classes. We train the VGG-19 [49] and
ResNet56 [24] neural networks on this dataset for 160 epochs with batch normalization, weight decay
(10−4), decreasing learning rate schedules (starting from 0.1) and augmented training data.

Language Modeling on WikiText-2 We trained a 2-layer LSTM model to perform a language
modeling task on the WikiText-2 dataset [40]. We used a hidden state size of 650 and included a
dropout layer between the two RNN layers with a dropout probability of 0.5. The LSTM received
word embeddings of size 650. For training, we used truncated Backpropagation Through Time
(truncated BPTT) with a sequence length of 50. The training batch size was set to 30, and models
were optimized using SGD with a learning rate of 20. This setup is similar to Yu et al. [55].

Bayesian Optimizer Settings We use a Gaussian Processes prior with the Matern kernel (ν = 2.5),
length scale of 1.0 and α value of 0.1 with normalization of the predictions. For the GP regressor, the
noise level in the covariance matrix is governed by another parameter, which we set to a very low
value 10e−6. For the ILS-UCB acquisition function, we use a κ value of 0.95 for all our experiments
with a bias towards sampling more in the area of level set, with the intention that the Bayesian
optimizer results in a favorable sparsity level in as few samples as possible. We stop the Bayesian
optimization loop according to the termination condition specified in Algorithm 1.

L-C Optimizer Settings The L-C optimizer was configured as follows: for all experiments, we
use µj = µoa

j , with µ0 = 10−3 and a = 1.1 where j is the L-C iteration. For CIFAR-10 and
ImageNet, we use the SGD optimizer in the learning (L) step with a momentum value of 0.9,
with the learning rate decayed from 0.1 to 10−5 over each mini-batch iteration. We use the Adam
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Table 1: CONDENSA performance results on CIFAR-10, ImageNet, and WikiText-2. s∗ is the sparsity
ratio obtained by CONDENSA, rc is the memory footprint reduction, and rT /sF is the throughput
improvement/FLOP reduction.

METHOD DATASET NETWORK ACCURACY/LOG PERPLEXITY s∗ BO-SAMPLES rc rT /sF

BASELINE CIFAR-10 VGG19-BN 92.98%
CONDENSA P+Q (ε = 2%) CIFAR-10 VGG19-BN 93.04% 0.97 8,7 65.25× N/A

CONDENSA FILTER (ε = 2%) CIFAR-10 VGG19-BN 93.51% 0.72 9,8 N/A rT = 2.22×
BASELINE CIFAR-10 RESNET56 92.75%
AMC [26] CIFAR-10 RESNET56 90.1% N/A N/A N/A sF = 2×

CONDENSA P+Q (ε = 2%) CIFAR-10 RESNET56 91.2% 0.94 7,7 27× N/A
CONDENSA FILTER (ε = 2%) CIFAR-10 RESNET56 91.29% 0.72 7,7 N/A rT = 1.07×

BASELINE IMAGENET VGG16-BN 91.5%
FILTER PRUNING [27] IMAGENET VGG16-BN 89.80% N/A N/A ≈ 4× N/A

AUTOSLIM [37] IMAGENET VGG16-BN 90.90% N/A N/A 6.4× N/A
AMC [26] IMAGENET VGG16-BN 90.10% N/A N/A N/A sF = 1.25×

CONDENSA P+Q (ε = 2%) IMAGENET VGG16-BN 89.89% 0.92 8,7 25.59× N/A
CONDENSA FILTER (ε = 2%) IMAGENET VGG16-BN 90.25% 0.12 9,7 N/A rT = 1.16×

BASELINE WIKITEXT-2 LSTM 4.70
[55] WIKITEXT-2 LSTM 6.5 N/A N/A ≈ 10× N/A

CONDENSA P+Q (ε = 2%) WIKITEXT-2 LSTM 4.75 0.92 9,7 4.2× N/A
CONDENSA BLOCK (ε = 2%) WIKITEXT-2 LSTM 4.77 0.61 8,7 N/A sF = 2.2×

optimizer in the L-step of WikiText-2 with a fixed learning rate of 10−4. We ran between 4000-5000
mini-batch iterations in each L-step, with a higher number of iterations in the first L-step (30k for
CIFAR-10 and ImageNet, and 7k for WikiText-2) as recommended by [6]. We ran 5, 30, and 50 L-C
iterations for WikiText-2, ImageNet, and CIFAR-10, respectively; compared to CIFAR-10, we ran
relatively fewer iterations for ImageNet due to its significantly higher computational cost, and ran
an extra 5 fine-tuning iterations instead. We use the same mini-batch sizes as during training for all
experiments, and use validation datasets to select the best model during compression (we perform a
9:1 training:validation split for CIFAR-10 since it doesn’t include a validation dataset).

Objective 1: Minimize Memory Footprint The memory footprint of a model is defined as the
number of bytes consumed by the model’s non-zero parameters. Reducing the footprint below a
threshold value is desirable, especially for memory-constrained devices such as mobile phones, and
can be accomplished through either pruning or quantization, or both.

Objective 2: Maximize Throughput Inference throughput is defined as the number of input sam-
ples processed by a model per second, and is commonly used for measuring real-world performance.
For CIFAR-10 and ImageNet, we measure hardware inference throughput of the compressed model
in the objective function. We use an NVIDIA Titan V GPU with the TensorRT 5 framework to obtain
throughput data.

We present the memory footprint reductions and inference throughput improvements obtained by
Condensa for each of the three tasks we evaluate in Table 1. For each task, we list the sparsity
ratio obtained by the Condensa Bayesian optimizer, its corresponding accuracy, memory footprint
reductions using pruning and quantization (column labeled rc), and inference throughput/FLOP
improvements using filter/block pruning (column labeled rT /sF ). We also show the number of
samples required by the Bayesian optimizer for each phase of the sparsity ratio inference algorithm
(shown in Algorithm 1) to arrive at the final solution. We also compare our approach with recent
work on automated model compression. For CIFAR-10 and ImageNet, we compare our results with
AMC [26] and AutoSlim [37], and for WikiText-2, we compare with [55]. We notice that Condensa
significantly outperforms current state-of-the-art approaches in terms of accuracy, throughput, and
model footprint reduction.

4 Conclusions
This paper has presented Condensa, which is a programming system for model compression. Con-
densa enables users to programmatically compose elementary schemes to build much more complex
and practically interesting schemes, and includes a novel sample-efficient constrained Bayesian
optimization-based algorithm for automatically inferring desirable sparsity ratios based on a user-
provided objective function (also expressed in Python). On three real-world image classification and
language modeling tasks, Condensa achieves memory footprint reductions of up to 65× and runtime
throughput improvements of up to 2.17× using at most 10 samples per search.
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5 Supplementary Material

This paper makes the following contributions: (1) it introduces Condensa, a novel programming
system for model compression and demonstrates its ease-of-use for expressing complex compression
schemes, (2) it presents the first sample-efficient constrained Bayesian optimization-based method for
automatically inferring optimal sparsity ratios based on a user-provided objective function, and (3)
it demonstrates the effectiveness of Condensa on three image classification and language modeling
tasks, resulting in memory footprint reductions of up to 65× and runtime throughput improvements
of up to 2.17× using at most 10 samples per search.

6 Background

An effective accuracy recovery mechanism for Condensa must ideally have three important attributes:
(1) able to handle all the compression operators supported by Condensa, (2) be efficient with relatively
low overheads, and (3) provide optimality guarantees whenever possible. In this paper, we use the
recently proposed L-C algorithm [6], since it satisfies all three of the above requirements. In L-C,
model compression is formulated as a constrained optimization problem:

minw,ΘL(w) s.t. w = D(Θ) (1)

The optimization is non-convex due to two reasons: (1) the original problem of training the reference
model is already non-convex for models such as DNNs, making the objective function non-convex,
and (2) the decompression mapping D(Θ) typically adds another layer of non-convexity caused by
an underlying combinatorial problem.

For a given task such as image classification, assume we have trained a large reference model
w = argminw L(w), where L() denotes a loss function (e.g., cross-entropy on a given training set),
and w ∈ RP . Model compression refers to finding a smaller model Θ that can be applied to the same
task and ideally achieves the same accuracy as w. Model compression can be performed in various
ways, and Condensa currently supports two commonly used techniques: pruning and quantization.
In pruning, non-zero values from w are eliminated or “pruned” to obtain Θ. Pruning is usually
performed using some kind of thresholding (for eg., magnitude-based) and can be unstructured (prune
any non-zero value) or structured (prune only blocks of non-zeros). On the other hand, quantization
retains the number of parameters in Θ but assigns parameters in w one of K codebook values,
where the codebook may be fixed or adaptive. Condensa supports low-precision approximation,
which refers to assigning each parameter in w a corresponding lower-precision representation (for
example, converting from 32-bit to 16-bit floating-point) and is equivalent to quantization using a
fixed codebook.

General Compression Algorithms and Tools General accuracy recovery algorithms capable of
handling a wide variety of compression techniques provide the foundation for systems like Condensa.
Apart from the L-C algorithm [5] which Condensa uses, other recent accuracy recovery algorithms
have been proposed. ADAM-ADMM [57] proposes a unified framework for structured weight pruning
based on ADMM that performs dynamic regularization in which the regularization target is updated in
each iteration. DCP [59] introduces additional losses into the network to increase the discriminative
power of intermediate layers and select the most discriminative channels for each layer by considering
the additional loss and the reconstruction error. Condensa can readily support such algorithms as
additional optimizers as described in Section 2. Neural network distiller [60] and TensorFlow
model optimization toolkit [17] are two recent open-source model compression frameworks that
support multiple compression schemes. While these projects share a number of common goals with
Condensa, they differ in two important ways: first, they do not support the expression of schemes as
imperative programs containing control-flow, iteration, recursion, etc. (Distiller requires a declarative
compression specification in YAML, while the TensorFlow model optimization toolkit operates by
modifying the DNN computation graph directly); second, these frameworks do not support automatic
compression hyperparameter optimization for black-box objective functions.

B.O. and Automated Model Compression Bayesian optimization has previously been demon-
strated to work well for general hyperparameter optimization in machine learning and neural ar-
chitecture search [50, 8]. To the best of our knowledge, we are the first to use sample-efficient
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search via Bayesian optimization for obtaining compression hyperparameters. Automation in model
compression is currently achieved either through reinforcement learning (RL) algorithms [26] or
simulated annealing [37]. In particular, the automation procedure for AMC [26] uses four arbitrary
stages of pruning and re-training for RL training; additionally, the reward function is difficult to
design, and even given a good reward, local optima can be hard to escape. It is also difficult to
determine when such methods may just be overfitting to irrelevant patterns in the environment. Even
disregarding generalization issues, AMC’s agent (DDPG) uses trial and error, which is charecterized
to have an underlying incompatibility with the target pruning problem [37]. AutoSlim [37] proposes
an automated approach based on simulated annealing, and use the ADMM algorithm for accuracy
recovery, which is an AL-based method very similar to the L-C algorithm; AutoSlim, however, only
supports weight pruning and does not support general compression schemes as Condensa does.

DNN Compression Techniques There is considerable prior work on accelerating neural networks
using structured weight pruning [13, 23, 22, 39, 20, 11, 21, 46, 28, 2, 43], quantization [58, 16, 48]
and low-rank tensor factorization [35, 54, 10, 15]. Most of these individual compression schemes
for pruning and quantization and their combinations can be expressed in Condensa. Two common
problems with these methods are: (1) determining optimal sparsity ratios at a global (network) level,
and (2) distributing global sparsity into a particular sparsity ratio for each layer. We tackle these
problems efficiently and systematically using our Bayesian and L-C optimizers, respectively.

6.1 Sparsity Profile Analysis
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Figure 3: Examples of CONDENSA operating on VGG19BN and ResNet56 for CIFAR-10. Column 1
shows the problem of the form “minimize Memory with a lower bound on accuracy", while Column
2 illustrates “maximize Throughput with a lower bound on accuracy". The DC line (grey) shows
accuracy values if no fine tuning with LC is performed.
Figures 3 and 4 illustrate how a compressed model’s accuracy, inference performance, and memory
footprint vary w.r.t. sparsity ratios for the CIFAR-10 and WikiText-2 tasks. All three of these functions
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Figure 4: 2-layer LSTM WikiText-2 task results for pruning + quantization (left) and block pruning
with block size of 5.

are assumed to be unknown in our problem formulation, but we compute them explicitly here to better
understand the quality of solutions produced by Condensa. For each figure, compression accuracies
(shown in green) are obtained by running the L-C algorithm to convergence for 100 sparsity ratios
ranging from 0.9 to 1.0 (for pruning + quantization), and from 0 to 1 for the filter and block pruning
schemes; collecting each such point requires between 30 minutes to 8 hours of time on a single
NVIDIA Tesla V100 GPU.

We notice three important trends in Figures 3 and 4: (1) Condensa consistently finds solutions near the
‘knee‘ of the L-C accuracy curves, signifying the effectiveness of the ILS-UCB acquisition function;
(2) local minima/maxima is avoided while optimizing the objective function, demonstrating that the
UCB acquisition function for objective function optimization is working as expected, and (3) the
knee of the D-C accuracy curves occur at significantly lower sparsity ratios; the L-C optimizer, on
the other hand is able to recover accuracies up to much higher sparsity ratios.

Algorithm Summary: We describe CONDENSA’s two-stage optimization pipeline in Algorithm 1.
Here, we first find a sparsity value sacc that constrains the accuracy function A to the provided ε. We
then constrain the search space to (0, sacc) while optimizing the user-provided objective function f .
The BAYESOPT function runs a Bayesian optimization loop given a target objective function Bf and
an acquisition function. Note that we assume that A decreases monotonically w.r.t. sparsity in the
region (0, sacc).

Scheme Description
Quantize(dtype) Quantizes network weights to given datatype dtype.
Prune() Performs unstructured pruning of network weights.
NeuronPrune(criteria) Aggregates and prunes neurons (1D blocks) according to

criteria.
FilterPrune(criteria) Aggregates and prunes filters (3D blocks) according to criteria.
StructurePrune(criteria) Combines neuron and filter pruning.
BlockPrune(criteria, bs) Aggregates and prunes n-D blocks of size bs according to

criteria.
Compose(slist) Composes together all schemes in slist.

Table 2: List of pre-built compression schemes in Condensa.

Listing 1 provides a concrete example of invoking Condensa to compress a model. Here, we first
train the reference models (lines 2-3) and instantiate the pre-built Prune scheme for unstructured
pruning (line 6; see Table 2 for a full list of pre-built schemes). We also define our objective function
to be throughput (line 8) and specify that it must be maximized (line 10); note that while users may
define their own objective functions, Condensa also comes bundled with some common objective
functions such as model memory footprint and throughput. Next, we instantiate the L-C optimizer
(line 12) and the model compressor (lines 14-24). The model compressor (Compressor class in
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1 # Construct pre-trained model
2 criterion = torch.nn.CrossEntropyLoss()
3 train(model, num_epochs, trainloader, criterion)
4
5 # Instantiate compression scheme
6 prune = condensa.schemes.Prune()
7 # Define objective function
8 tput = condensa.objectives.throughput
9 # Specify optimization operator

10 obj = condensa.searchops.Maximize(tput)
11 # Instantiate L-C optimizer
12 lc = condensa.optimizers.LC(steps=30, lr=0.01)
13 # Build model compressor instance
14 compressor = condensa.Compressor(
15 model=model, # Trained model
16 objective=obj, # Objective
17 eps=0.02, # Accuracy threshold
18 optimizer=lc, # Accuracy recovery
19 scheme=prune, # Compression scheme
20 trainloader=trainloader, # Train dataloader
21 testloader=testloader, # Test dataloader
22 valloader=valloader, # Val dataloader
23 criterion=criterion # Loss criterion
24 )
25 # Obtain compressed model
26 wc = compressor.run()

Listing 1: Example usage of the Condensa library.

Listing) automatically samples and evaluates global sparsity ratios as described in Section 2.3 and
returns the final compressed model.

The objective function f for memory footprint case is defined as follows:

from torch.nn.utils import parameters_to_vector
def footprint(w):

return parameters_to_vector(w.parameters())
.view(-1).nonzero().numel() * 2.0

from schemes import Compose, Prune, Quantize
scheme = Compose([Prune(), Quantize(float16)])

6.2 Bayesian Optimizer ILS-UCB Trace

In the following plots we show an example run of the Bayesian optimizer trace running on the
black-box function set as Condensa Compression accuracy with an acquicision function setup as
ILS-UCB. The BayesOpt is attempting to find the level set on the Top-1 test accuracy of the compressed
model. The X-axis on the top plots is Sparsity and Y-Axis is Top-1 test accuracy (top-plot) and Utility
function on the bottom plot. The red dots on the top plots are samples of the expensive function and
the star on the bottom plots are the maxima of the utility function. The blue dark line represents
the Target function, recall that this function can be programmed by the user as throughput, FLOPs,
memory footprint or Top-1 Accuracy. The dotted line is the GP’s belief of the shape of the function,
notice how it evolves over each sample. These figures show a Gaussian process (GP) approximation
of the objective function over four iterations of sampled values of the objective function. The figure
also shows the acquisition function in the lower plots. The acquisition is high where the GP predicts
a high objective (exploitation) and where the prediction uncertainty is high (exploration)—areas with
both attributes are sampled first. Note that the area on the far left remains unsampled, as while it has
high uncertainty, it is (correctly) predicted to offer little improvement over the highest observation.

The expectation of the improvement function with respect to the predictive distribution of the Gaussian
process enables us to balance the trade-off of exploiting and exploring. When exploring, we should
choose points where the surrogate variance is large. When exploiting, we should choose points
where the surrogate mean is high. To sample efficiently, Bayesian optimization uses these acquisition
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Figure 5: The Bayes Opt is Initialized with 2-points to begin with, denoted by the two red-dots.

Figure 6: Illustrating the state of the GP-regressor, notice the change in Variance of the GP

Figure 7: This is the state of the BayesOpt after three samples, its is important to note that the
BayesOpt decided not to take any more samples on the right hand side of the curve.

Figure 8: This plot illustrates the sample efficiency of BayesOpt, as you notice the fourth sample is
drawn on the knee of the curve, attemping to minimize the difference between the Implicit Level Set
and the function representation.

function to determine the next location xt+1 ∈ A to sample. The decision represents an automatic
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trade-off between exploration (where the objective function is very uncertain) and exploitation (trying
values of x where the objective function is expected to be high). This optimization technique has
the nice property that it aims to minimize the number of objective function evaluations. Moreover,
it is likely to do well even in settings where the objective function has multiple local maxima. Our
acquisition is currently both myopic and permits only a single sample per iteration. Looking forward
to some horizon would be extremely valuable, as well as in trying to optimize within a known budget
of future observations.

Figure 9: In this figure below, we have density in the x-axis and perform ablation studies by
running our Bayesian Optimizer with different acquisition functions that are available in CONDENSA
framework: PI, EI, GP-UCB as the acquisition model after 15 steps and ILS-UCB after 5 samples.
GP-ILS-UCB gets a good estimate around the requested level set quickly with 3x fewer samples,
while UCB adn EI also perform reasonably but with many more samples. In this domain, where each
sample is very expensive this difference is quite substantial.

Maximizing the acquisition function CONDENSA uses a function to find the maximum of the
acquisition function and use a combination of random sampling and the L-BFGS-B optimization
method. First by sampling a few warmup (1e5) points at random, and then running L-BFGS-B from
(250) random starting points. To find the point at which to sample, we still need to maximize the
constrained objective u(x). Unlike the original objective function, u(·) can be cheaply sampled.
Existing works optimize the acquisition function using DIRECT [32], a deterministic, derivative-free
optimizer. It uses the existing samples of the objective function to decide how to proceed to divide
the feasible space into finer rectangles. Other methods such as Monte Carlo and multi-start have also
been used, and seem to perform reasonably well [41, 38]. Note that the second term in the equation is
negative, as we are trying to sample in locations where the distance to the level set is minimized. To
find the point at which to sample, we still need to maximize the constrained objective u(x). Unlike
the original objective function f , u(·) can be cheaply sampled. In CONDENSA we use GP-UCB
(GP-LCB) for function maximization (minimization) and ILS-UCB for solving constraints, as shown
in Algorithm 1.

Bayesian Optimizer Settings 1. Probability of Improvement This intuitive stategy maximizes
the probability of improving over the best current value [34]. Under the GP this can be computed
analytically as: aPI(x; {xn, yn}, θ) = Φ(γ(x)), where γ(x) = f(xbest)−µ(x;{xn,yn},θ)

σ(x;{xn,yn},θ) .

2. Expected Improvement. Alternatively, one could choose to maximize the expected im-
provement (EI) over the current best. This also has closed form under the Gaussian process:
aEI(x; {xn, yn}, θ) = σ(x;xn, yn, θ)− κσ(x; {xn, yn}, θ), with a tunable κ to balance exploitation
against exploration.

3. Upper/Lower Confidence Bound. Herein, the functional approximation uncertainty is leveraged
for acquisition through lower (upper) confidence bounds for functional min (max) [51]. These
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acquisition functions have the form aUCB(x; {xn, yn}; θ) = µ(x; {xn, yn}, θ)− κσ(x; {xn, yn}, θ),
with a tunable κ to balance exploitation against exploration.

4. Level-Set Optimization. In addition to unconstrained optimization, to enable CONDENSA to achieve
constraint satification we build on top of level-set black-box optimization [3, 14, 56]. We leverage a
Gaussian Process Adaptive Sampling criterion called Implicit Level Set Upper Confidence Bound
(ILS-UCB) [14], that prioritizes sampling near a level set of the estimate.

This algorithm prioritizes searching the expected LC curve intersection with user accuracy constraints,
conditional on estimated uncertainty, and does not seek to precisely learn the shape of the entire LC
curve. Intuitively, by reducing the estimation space to specifically localize the sparsity that meets
user accuracy constraints, we can reduce the total number of measurements-and consequently the
time required to achieve an optimal value for the sparsity. Hence, rather than prioritizing both high
variance and high mean like UCB, ILS-UCB prioritizes sampling in areas near a level set of the mean
represented by the Gaussian Process Implicit Surface, i.e. to minimize the implicit potential defined
by µ(x)−L, and where the confidence interval is large:xt = argmax

x∈X
(1− γ)σ(x)− γ ∗ |µ(x)−L|

6.3 Layer-Wise Runtime Performance

In this section, we analyze how improving throughput using compression translates to execution
time improvements for each layer on actual hardware. For this experiment, we focus on VGG-19 on
CIFAR-10, since it has a relatively simple structure and is easy to analyze on a layer-by-layer basis.
We use filter pruning with a sparsity ratio of 0.7 for this experiment. We report the mean runtimes
over 100 executions as obtained using TensorRT.

Table 3 shows layer-by-layer compression ratios and mean runtimes collected over 100 runs for filter
pruning. Here, the columns labeled R and C represent results for the reference, and filter-pruned
models, respectively. We only show data for convolutional layers as they dominate computation time
for this network. We observe large inference runtime speedups in later layers of the network and
observe a geometric mean speedup of 3.21x over the original model. This result helps us gain more
insight into how the L-C algorithm distributes global sparsity ratios to each layer, resulting in actual
hardware speedups.

LAYER SHAPE TIME(MS) SPEEDUP
R C R C

CONV1 3 X 3 X 3 X 64 3 X 3 X 3 X 23 0.07 0.05 1.4X
CONV2 3 X 3 X 64 X 64 3 X 3 X 23 X 58 0.23 0.11 2.09X
CONV3 3 X 3 X 64 X 128 3 X 3 X 58 X 126 0.12 0.13 0.92X
CONV4 3 X 3 X 128 X 128 3 X 3 X 126 X 127 0.22 0.24 0.92X
CONV5 3 X 3 X 128 X 256 3 X 3 X 127 X 256 0.22 0.22 1
CONV6 3 X 3 X 256 X 256 3 X 3 X 256 X 255 0.41 0.41 1
CONV7 3 X 3 X 256 X 256 3 X 3 X 255 X 251 0.41 0.41 1
CONV8 3 X 3 X 256 X 256 3 X 3 X 251 X 241 0.41 0.41 1
CONV9 3 X 3 X 256 X 512 3 X 3 X 241 X 214 0.28 0.22 1.27X
CONV10 3 X 3 X 512 X 512 3 X 3 X 214 X 71 0.54 0.16 3.38X
CONV11 3 X 3 X 512 X 512 3 X 3 X 71 X 30 0.53 0.03 17.67X
CONV12 3 X 3 X 512 X 512 3 X 3 X 30 X 38 0.53 0.03 17.67X
CONV13 3 X 3 X 512 X 512 3 X 3 X 38 X 48 0.56 0.04 14X
CONV14 3 X 3 X 512 X 512 3 X 3 X 48 X 38 0.56 0.04 14X
CONV15 3 X 3 X 512 X 512 3 X 3 X 38 X 48 0.56 0.04 14X
CONV16 3 X 3 X 512 X 512 3 X 3 X 28 X 102 0.56 0.04 14X

Table 3: Layer-wise TensorRT run-times and speedups for filter pruning of VGG-19. R and C denote
reference and compressed models, respectively.

6.4 Implementation Notes

The Condensa library and L-C optimizer are implemented in Python and are designed to inter-operate
seamlessly with the PyTorch framework [45]. While we chose PyTorch for its widespread use in
the machine learning community, it is worth noting that Condensa’s design is general and that its

16



1 import torch
2
3 import condensa
4 import condensa.tensor as T
5 import condensa.functional as F

Listing 2: Preamble code for all scheme implementations.

features can be implemented in other similar frameworks such as TensorFlow [1] and MXNET [7].
We currently use a publicly available Python library for Bayesian global optimization with Gaussian
Processes [12]. In a large-scale production setting, the configuration spaces may be larger and the
trade-offs more complex; we plan to use a more scalable Bayesian optimization library such as
Ray [44] in the future to address these issues.

Network Thinning Condensa comes pre-built with three structure pruning schemes: filter, neuron,
and block pruning, as shown in Table 2. The application of these schemes may yield zero structures,
which refer to blocks of zeros within a DNN’s parameters. Network thinning refers to the process
of identifying and removing such zero structures and consequently reducing the number of floating-
point operations executed by the target hardware platform. Condensa employs a three-phase network
thinning algorithm for structured pruning: in the first phase, we construct an in-memory graph
representation of the target DNN. PyTorch makes this non-trivial, as its eager execution semantics
preclude it from ever building a full graph-based representation of the DNN. To overcome this, we
trace a forward execution path of the DNN and use it to construct an in-memory representation
based on the ONNX format. In the next phase, we create a thinning strategy by analyzing the
dependencies between the nodes of the graph constructed in the first phase. This step primarily
involves keeping track of tensor dimension changes in a node due to thinning and ensuring that the
corresponding tensor dimensions of the node’s successors are appropriately adjusted. Due to the
possibility of complex dependence patterns such as skip nodes in real-world DNNs (for example,
deep residual networks [24]), this step is the most challenging to implement. In the final phase, we
apply the thinning strategy obtained in phase 2 and physically alter tensor shapes to obtain the final
thinned network. The Condensa Library provides a thin method which can be used to thin a given
compressed model.

6.5 Pre-Built Schemes: Source Code

Condensa’s tight integration with Python makes the expression of common compression patterns
more natural. For example, operators can be combined with conditional statements to selectively
compress layers based on properties of the input DNN and/or target hardware platform, as shown
below:

# Prune only non-projection layers in ResNets
if not layer.is_projection: prune(layer)
# Quantize only if FP16 hardware is available
if platform_has_fast_fp16(): quantize(layer)

We list the full source code for the pre-built compression schemes shown in Table 2 in Listings 2 to 9.

17



1 class Prune(object):
2 """Performs unstructured pruning."""
3 def __init__(self, layer_types):
4 self._density = None
5 self.layer_types = layer_types
6
7 @property
8 def density(self):
9 return self._density

10
11 @density.setter
12 def density(self, d):
13 self._density = d
14
15 def threshold(self, module):
16 vec = []
17 for m in module.modules():
18 if type(m) in self.layer_types and not hasattr(
19 m, ’condensa_nocompress’):
20 all_weights = [n for n, _ in m.named_parameters()]
21 weights = [x for x in all_weights if x.startswith(’weight’)]
22 for w in weights:
23 vec.append(getattr(m, w).data.view(-1))
24 return T.threshold(torch.cat(vec), self._density)
25
26 def pi(self, module):
27 threshold = self.threshold(module)
28 for m in module.modules():
29 if type(m) in self.layer_types and not hasattr(
30 m, ’condensa_nocompress’):
31 all_weights = [n for n, _ in m.named_parameters()]
32 weights = [x for x in all_weights if x.startswith(’weight’)]
33 for w in weights:
34 condensa.prune(m, threshold, parameter=w)
35
36 def delta(self, module):
37 pass

Listing 3: Unstructured pruning scheme.

1 class Quantize(object):
2 """Quantizes network to given data-type."""
3 def __init__(self, layer_types, dtype):
4 self.dtype = dtype
5 self.layer_types = layer_types
6
7 def pi(self, module):
8 for m in module.modules():
9 if type(m) in self.layer_types and not hasattr(

10 m, ’condensa_nocompress’):
11 condensa.quantize(m, self.dtype)
12
13 def delta(self, module):
14 for m in module.modules():
15 if type(m) in self.layer_types and not hasattr(
16 m, ’condensa_nocompress’):
17 condensa.dequantize(m, condensa.float32)

Listing 4: Quantization scheme.
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1 class NeuronPrune(object):
2 """Prunes neurons from fully-connected layers."""
3 def __init__(self, criteria=F.l2norm, prune_bias=True):
4 self._density = None
5 self.criteria = criteria
6 self.prune_bias = prune_bias
7
8 @property
9 def density(self): return self._density

10
11 @density.setter
12 def density(self, d): self._density = d
13
14 def threshold(self, module):
15 vec = []
16 for m in module.modules():
17 if isinstance(m, torch.nn.Linear) and not hasattr(m, ’condensa_nocompress’

):
18 agg = T.aggregate_neurons(m.weight.data, self.criteria)
19 vec.append(agg.view(-1))
20 return T.threshold(torch.cat(vec), self._density)
21
22 def pi(self, module):
23 threshold = self.threshold(module)
24 for m in module.modules():
25 if isinstance(m, torch.nn.Linear) and not hasattr(m, ’condensa_nocompress’

):
26 condensa.neuron_prune(m, threshold, criteria=self.criteria, prune_bias

=self.prune_bias)
27
28 def delta(self, module): pass

Listing 5: Neuron pruning scheme.
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1 class FilterPrune(object):
2 """Prunes filters from convolutional layers."""
3 def __init__(self, criteria=F.l2norm, prune_bias=True):
4 self._density = None
5 self.criteria = criteria
6 self.prune_bias = prune_bias
7
8 @property
9 def density(self): return self._density

10
11 @density.setter
12 def density(self, d): self._density = d
13
14 def threshold(self, module):
15 vec = []
16 for m in module.modules():
17 if isinstance(m, torch.nn.Conv2d) and not hasattr(m, ’condensa_nocompress’

):
18 agg = T.aggregate_filters(m.weight.data, self.criteria)
19 vec.append(agg.view(-1))
20 return T.threshold(torch.cat(vec), self._density)
21
22 def pi(self, module):
23 threshold = self.threshold(module)
24 for m in module.modules():
25 if isinstance(m, torch.nn.Conv2d) and not hasattr(m, ’condensa_nocompress’

):
26 condensa.filter_prune(m, threshold, criteria=self.criteria, prune_bias

=self.prune_bias)
27
28 def delta(self, module): pass

Listing 6: Filter pruning scheme.
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1 class StructurePrune(object):
2 """Combines neuron and filter pruning."""
3 def __init__(self, criteria=F.l2norm, prune_bias=True):
4 self.density = None
5 self.criteria = criteria
6 self.prune_bias = prune_bias
7
8 @property
9 def density(self):

10 return self._density
11
12 @density.setter
13 def density(self, d):
14 self._density = d
15
16 def threshold(self, module):
17 vec = []
18 for m in module.modules():
19 if isinstance(m, torch.nn.Linear) and not hasattr(
20 m, ’condensa_nocompress’):
21 agg = T.aggregate_neurons(m.weight.data, self.criteria)
22 vec.append(agg.view(-1))
23 if isinstance(m, torch.nn.Conv2d) and not hasattr(
24 m, ’condensa_nocompress’):
25 agg = T.aggregate_filters(m.weight.data, self.criteria)
26 vec.append(agg.view(-1))
27 return T.threshold(torch.cat(vec), self._density)
28
29 def pi(self, module):
30 threshold = self.threshold(module)
31 for m in module.modules():
32 if isinstance(m, torch.nn.Linear) and not hasattr(
33 m, ’condensa_nocompress’):
34 condensa.neuron_prune(m,
35 threshold,
36 criteria=self.criteria,
37 prune_bias=self.prune_bias)
38 if isinstance(m, torch.nn.Conv2d) and not hasattr(
39 m, ’condensa_nocompress’):
40 condensa.filter_prune(m,
41 threshold,
42 align=self.align,
43 criteria=self.criteria,
44 prune_bias=self.prune_bias)
45
46 def delta(self, module):
47 pass

Listing 7: Structure pruning scheme.
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1 class BlockPrune(object):
2 """Prunes blocks in Linear layers."""
3 def __init__(self, block_size, layer_types, criteria=F.l2norm):
4 self._density = None
5 self.block_size = block_size
6 self.criteria = criteria
7 self.layer_types = layer_types
8
9 @property

10 def density(self):
11 return self._density
12
13 @density.setter
14 def density(self, d):
15 self._density = d
16
17 def threshold(self, module):
18 vec = []
19 for m in module.modules():
20 if type(m) in self.layer_types and not hasattr(m, ’condensa_nocompress’):
21 all_weights = [n for n, _ in m.named_parameters()]
22 weights = [x for x in all_weights if x.startswith(’weight’)]
23 for w in weights:
24 agg = T.aggregate(getattr(m, w).data, self.block_size, self.

criteria)
25 vec.append(agg.view(-1))
26 return T.threshold(torch.cat(vec), self._density)
27
28 def pi(self, module):
29 threshold = self.threshold(module)
30 for m in module.modules():
31 if type(m) in self.layer_types and not hasattr(m, ’condensa_nocompress’):
32 all_weights = [n for n, _ in m.named_parameters()]
33 weights = [x for x in all_weights if x.startswith(’weight’)]
34 for w in weights:
35 condensa.blockprune(m,
36 threshold,
37 block_size=self.block_size,
38 criteria=self.criteria,
39 parameter=w)
40
41 def delta(self, module):
42 pass

Listing 8: Block pruning scheme.

1 class Compose(object):
2 """Composes two or more schemes together."""
3 def __init__(self, schemes):
4 if not isinstance(schemes, list):
5 raise TypeError(’Please specify schemes to compose as a list’)
6 self.schemes = schemes
7
8 def pi(self, module):
9 for s in self.schemes:

10 s.pi(module)
11
12 def delta(self, module):
13 for s in reversed(self.schemes):
14 s.delta(module)

Listing 9: Scheme composition.
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