
TensorFlow: A System for Machine
Learning on Heterogeneous Systems

Jeff Dean
Google

Google Brain team in collaboration with many other teams

Google Brain Team
● Mission: Develop advanced AI techniques and make them

useful for people

● Strong mix of pure research, applied research, and computer
systems building

Growing Use of Deep Learning at Google

Android
Apps
drug discovery
Gmail
Image understanding
Maps
Natural language
understanding
Photos
Robotics research
Speech
Translation
YouTube
… many others ...

Across many
products/areas:

of directories containing model description files

Time

U
ni

qu
e

P
ro

je
ct

 D
ire

ct
or

ie
s

Deep Learning

Universal Machine Learning
Speech

Text
Search

Queries
Images
Videos
Labels

Entities
Words
Audio

Features

Speech
Text
Search
Queries
Images
Videos
Labels
Entities
Words
Audio
Features

What do you want in a machine learning system?
● Ease of expression: for lots of crazy ML ideas/algorithms
● Scalability: can run experiments quickly
● Portability: can run on wide variety of platforms
● Reproducibility: easy to share and reproduce research
● Production readiness: go from research to real products

TensorFlow:
Second Generation Deep Learning System

http://tensorflow.org/

If we like it, wouldn’t the rest of the world like it, too?

Open sourced single-machine TensorFlow on Monday, Nov. 9th
● Flexible Apache 2.0 open source licensing
● Updates for distributed implementation coming soon

http://tensorflow.org/
http://tensorflow.org/

http://tensorflow.org/

http://tensorflow.org/
http://tensorflow.org/

DistBelief (1st system):

● Great for scalability, and production training of basic kinds of models
● Not as flexible as we wanted for research purposes

Better understanding of problem space allowed us to
make some dramatic simplifications

Motivations

TensorFlow: Expressing High-Level ML Computations

● Core in C++

Core TensorFlow Execution System

CPU GPU Android iOS ...

TensorFlow: Expressing High-Level ML Computations

● Core in C++
● Different front ends for specifying/driving the computation

○ Python and C++ today, easy to add more

Core TensorFlow Execution System

CPU GPU Android iOS ...

TensorFlow: Expressing High-Level ML Computations

● Core in C++
● Different front ends for specifying/driving the computation

○ Python and C++ today, easy to add more

Core TensorFlow Execution System

CPU GPU Android iOS ...

C++ front end Python front end ...

Automatically runs models on range of platforms:

from phones ...

to single machines (CPU and/or GPUs) …

to distributed systems of many 100s of GPU cards

Portable

MatMul

Add Relu

biases

weights

examples

labels

Xent

Graph of Nodes, also called Operations or ops.

Computation is a dataflow graph

with tensors

MatMul

Add Relu

biases

weights

examples

labels

Xent

Edges are N-dimensional arrays: Tensors

Computation is a dataflow graph

with state

Add Mul

biases

...

learning rate

−=...

'Biases' is a variable −= updates biasesSome ops compute gradients

Computation is a dataflow graph

Similar to Theano, TensorFlow can automatically
calculate symbolic gradients of variables w.r.t. loss
function.
Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y-predict - y_expected))
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

Much easier to express complex and train complex
models

Automatic Differentiation

Device BDevice A

distributed

Add Mul

biases

learning rate

−=...

Devices: Processes, Machines, GPUs, etc

...

Computation is a dataflow graph

Device BDevice A

distributed

Add Mul

biases

learning rate

−=...

Devices: Processes, Machines, GPUs, etc

Send and Receive Nodes

...

Device BDevice A

distributed

Add Mul

biases

learning rate

−=...

Devices: Processes, Machines, GPUs, etc

Send and Receive Nodes

...
Add

Send Recv

Device A Device B

distributed

Add Mul

biases

learning rate

−=...

Devices: Processes, Machines, GPUs, etc

Send and Receive Nodes

Send

Recv

Send Recv
Send Recv

... RecvSend

Send and Receive Implementations

● Different implementations depending on source/dest devices

● e.g. GPUs on same machine: local GPU → GPU copy

● e.g. CPUs on different machines: cross-machine RPC

● e.g. GPUs on different machines: RDMA or RPC

Extensible

● Core system defines a number of standard operations

and kernels (device-specific implementations of

operations)

● Easy to define new operators and/or kernels

Session Interface

● Extend: add nodes to computation graph

● Run: execute an arbitrary subgraph
○ optionally feeding in Tensor inputs and retrieving Tensor output

Typically, setup a graph with one or a few Extend calls and

then Run it thousands or millions or times

Single Process Configuration

Distributed Configuration
RPC

RPC RPC RPC

Feeding and Fetching

Run(input={“b”: ...}, outputs={“f:0”})

Feeding and Fetching

Run(input={“b”: ...}, outputs={“f:0”})

Initial measurements done by Soumith Chintala
TensorFlow Single Device Performance

See https://github.com/soumith/convnet-benchmarks/issues/66
Two main factors:
(1) various overheads (nvcc doesn’t like 64-bit tensor indices, etc.)
(2) versions of convolutional libraries being used (cuDNNv2 vs. v3, etc.)

Benchmark Forward Forward+Backward

AlexNet - cuDNNv3 on Torch (Soumith) 32 ms 96 ms

AlexNet - Neon (Soumith) 32 ms 101 ms

AlexNet - cuDNNv2 on Torch (Soumith) 70 ms 231 ms

AlexNet - cuDNNv2 on TensorFlow 0.5 (Soumith) 96 ms 326 ms

https://github.com/soumith/convnet-benchmarks/issues/66

TensorFlow Single Device Performance

Benchmark Forward Forward+Backward

AlexNet - cuDNNv3 on Torch (Soumith) 32 ms 96 ms

AlexNet - Neon (Soumith) 32 ms 101 ms

AlexNet - cuDNNv2 on Torch (Soumith) 70 ms 231 ms

AlexNet - cuDNNv2 on TensorFlow 0.5 (Soumith) 96 ms 326 ms

AlexNet - cuDNNv2 on TensorFlow 0.5 (our machine) 97 ms 336 ms

AlexNet - cuDNNv2 on TensorFlow 0.6 (our machine: soon) 70 ms (+39%) 230 ms (+31%)

Prong 1: Tackling sources of overhead

TensorFlow Single Device Performance

TODO: Release 0.6 this week improves speed to equivalent
with other packages using cuDNNv2

Subsequent updates will upgrade to faster core libraries
like cuDNN v3 (and/or the upcoming v4)

Also looking to improve memory usage

Single device performance important, but
….

 biggest performance improvements come
from large-scale distributed systems with

model and data parallelism

Experiment Turnaround Time and Research Productivity

● Minutes, Hours:
○ Interactive research! Instant gratification!

● 1-4 days
○ Tolerable
○ Interactivity replaced by running many experiments in parallel

● 1-4 weeks
○ High value experiments only
○ Progress stalls

● >1 month
○ Don’t even try

Transition
● How do you do this at scale?
● How does TensorFlow make distributed training easy?

Model Parallelism
● Best way to decrease training time: decrease the step

time
● Many models have lots of inherent parallelism
● Problem is distributing work so communication doesn’t

kill you
○ local connectivity (as found in CNNs)
○ towers with little or no connectivity between towers (e.g. AlexNet)
○ specialized parts of model active only for some examples

On a single core: Instruction parallelism (SIMD). Pretty much
free.

Across cores: thread parallelism. Almost free, unless across
sockets, in which case inter-socket bandwidth matters (QPI on
Intel).

Across devices: for GPUs, often limited by PCIe bandwidth.

Across machines: limited by network bandwidth / latency

Exploiting Model Parallelism

Model Parallelism

Model Parallelism

Model Parallelism

Data Parallelism
● Use multiple model replicas to process different

examples at the same time
○ All collaborate to update model state (parameters) in shared

parameter server(s)

● Speedups depend highly on kind of model
○ Dense models: 10-40X speedup from 50 replicas
○ Sparse models:

■ support many more replicas
■ often can use as many as 1000 replicas

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p∆p

p += ∆p

Success of Data Parallelism
● Data parallelism is really important for many of Google’s

problems (very large datasets, large models):
○ RankBrain uses 500 replicas
○ ImageNet Inception training uses 50 GPUs, ~40X

speedup
○ SmartReply uses 16 replicas, each with multiple GPUs
○ State-of-the-art on LM “One Billion Word” Benchmark

model uses both data and model parallelism on 32
GPUs

10 vs 50 Replica Inception Synchronous Training

Hours

10 replicas
50 replicas

10 vs 50 Replica Inception Synchronous Training

Hours

10 replicas
50 replicas

19.6 vs. 80.3 (4.1X)

5.6 vs. 21.8 (3.9X)

Using TensorFlow for Parallelism
Trivial to express both model parallelism as well as data
parallelism

● Very minimal changes to single device model code

Devices and Graph Placement
● Given a graph and set of devices, TensorFlow

implementation must decide which device executes
each node

Full and Partial Device Constraints (Hints)
Devices are named hierarchically:

/job:localhost/device:cpu:0
/job:worker/task:17/device:gpu:3
/job:parameters/task:4/device:cpu:0

Client can specify full or partial constraints for nodes in
graph:

“Place this node on /job:localhost/device:gpu:2”

“Place this node on /device:gpu:*”

Placement Algorithm
Given hints, plus a cost model (node execution time
estimates and Tensor size estimates), make placement
decisions

● Current relatively simple greedy algorithm
● Active area of work

Example: LSTM [Hochreiter et al, 1997]

● From research paper to code

Sequence-to-Sequence Model

 A B C

v

 D __ X Y Z

 X Y Z Q

Input sequence

Target sequence

[Sutskever & Vinyals & Le NIPS 2014]

Example: LSTM

for i in range(20):
 m, c = LSTMCell(x[i], mprev, cprev)
 mprev = m
 cprev = c

Example: Deep LSTM

for i in range(20):
 for d in range(4): # d is depth
 input = x[i] if d is 0 else m[d-1]
 m[d], c[d] = LSTMCell(input, mprev[d], cprev[d])
 mprev[d] = m[d]
 cprev[d] = c[d]

Example: Deep LSTM

for i in range(20):
 for d in range(4): # d is depth
 input = x[i] if d is 0 else m[d-1]
 m[d], c[d] = LSTMCell(input, mprev[d], cprev[d])
 mprev[d] = m[d]
 cprev[d] = c[d]

Example: Deep LSTM

for i in range(20):
 for d in range(4): # d is depth
 with tf.device("/gpu:%d" % d):
 input = x[i] if d is 0 else m[d-1]
 m[d], c[d] = LSTMCell(input, mprev[d], cprev[d])
 mprev[d] = m[d]
 cprev[d] = c[d]

A B C D _
_ A B C

A B C D

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

TensorFlow Queues

Input prefetching

Grouping similar examples

Randomization/Shuffling

Queue

...

Enqueue

...

Dequeue

Example: Deep LSTMs
● Wrinkles

○ Bucket sentences by length using a queue per length
○ Dequeue when a full batch of same length has

accumulated
○ N different graphs for different lengths
○ Alternative: while loop

Expressing Data Parallelism
We use the ReplicaDeviceSetter() device function to automatically
assign Variables to the 'ps' jobs.
with tf.device(“/cpu:0”):
 # Create the Mnist model.
 model = MnistModel(batch_size=16, hidden_units=200)

 # Get an initialized, and possibly recovered session.
 sess = tf.Session()

 # Train the model.
 for local_step in xrange(FLAGS.max_steps):
 _, loss, step = sess.run([model.train_op, model.loss, model.global_step])
 if local_step % 1000 == 0:
 print "step %d: %g" % (step, loss)

Expressing Data Parallelism
We use the ReplicaDeviceSetter() device function to automatically
assign Variables to the 'ps' jobs.
with tf.device(tf.ReplicaDeviceSetter(parameter_devices=10)):
 # Create the Mnist model.
 model = MnistModel(batch_size=16, hidden_units=200)

 # Create a Supervisor. It will take care of initialization, summaries,
 # checkpoints, and recovery. When multiple replicas of this program are running,
 # the first one, identified by --task=0 is the 'chief' supervisor (e.g., initialization, saving)
 supervisor = tf.Supervisor(is_chief=(FLAGS.task == 0), saver=model.saver)

 # Get an initialized, and possibly recovered session.
 sess = supervisor.PrepareSession(FLAGS.master_job)

 # Train the model.
 for local_step in xrange(int32_max):
 _, loss, step = sess.run([model.train_op, model.loss, model.global_step])
 if step >= FLAGS.max_steps:
 break
 if local_step % 1000 == 0:
 print "step %d: %g" % (step, loss)

Asynchronous Training
● Unlike DistBelief, no separate parameter server system:

○ Parameters are now just stateful nodes in the graph

Synchronous Variant

Network Optimizations
● Neural net training very tolerant of reduced precision
● e.g. drop precision to 16 bits across network

Device A Device B

params
Mat
Mul

Send Recv

Input
...

Network Optimizations
● Neural net training very tolerant of reduced precision
● e.g. drop precision to 16 bits across network

Device A Device B

params
Mat
Mul

Send Recv

Input
...

ToFP16 ToFP32

Device A Device B

Add Mul

biases

learning rate

−=...

Devices: Processes, Machines, GPUs, etc

Send

Recv

Send Recv
Send Recv

... RecvSend

Subgraph Compiler

● Compile small subgraphs together to generate
optimized routine

● Dynamic compiler with caching so sizes are known

Quantization for Inference
● Need even less precision for inference
● 8-bit fixed point works well, but many ways of

quantizing
● Critical for things like mobile devices

○ w/quantization, high-end smart phone can run
Inception model at >6 frames per second (fps)

Open Source Status for Distributed TensorFlow
Multi GPU in single machine already in open source release

● See 4-GPU CIFAR10 training example in repository

Distributed implementation coming soon:

● GitHub tracking issue: github.
com/tensorflow/tensorflow/issues/23

https://github.com/tensorflow/tensorflow/issues/23
https://github.com/tensorflow/tensorflow/issues/23
https://github.com/tensorflow/tensorflow/issues/23

Concluding Remarks
● Model and Data Parallelism enable great ML work:

○ Neural Machine Translation: ~6x speedup on 8 GPUs
○ Inception / Imagenet: ~40x speedup on 50 GPUs
○ RankBrain: ~300X speedup on 500 machines

● A variety of different parallelization schemes are easy to
express in TensorFlow

Concluding Remarks
● Open Sourcing of TensorFlow

○ Rapid exchange of research ideas (we hope!)
○ Easy deployment of ML systems into products
○ TensorFlow community doing interesting things!

A Few TensorFlow Community Examples
● DQN: github.com/nivwusquorum/tensorflow-deepq

● NeuralArt: github.com/woodrush/neural-art-tf

● Char RNN: github.com/sherjilozair/char-rnn-tensorflow

● Keras ported to TensorFlow: github.com/fchollet/keras

● Show and Tell: github.com/jazzsaxmafia/show_and_tell.tensorflow

● Mandarin translation: github.com/jikexueyuanwiki/tensorflow-zh

...

https://github.com/nivwusquorum/tensorflow-deepq
https://github.com/woodrush/neural-art-tf
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/fchollet/keras
https://github.com/jazzsaxmafia/show_and_tell.tensorflow
https://github.com/jikexueyuanwiki/tensorflow-zh

 github.com/nivwusquorum/tensorflow-deepq

https://github.com/nivwusquorum/tensorflow-deepq

github.com/woodrush/neural-art-tf

https://github.com/woodrush/neural-art-tf
https://github.com/woodrush/neural-art-tf

github.com/sherjilozair/char-rnn-tensorflow

https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow

github.com/fchollet/keras

https://github.com/fchollet/keras
https://github.com/fchollet/keras

github.com/jazzsaxmafia/show_and_tell.tensorflow

https://github.com/jazzsaxmafia/show_and_tell.tensorflow
https://github.com/jazzsaxmafia/show_and_tell.tensorflow

github.com/jikexueyuanwiki/tensorflow-zh

http://github.com/jikexueyuanwiki/tensorflow-zh
http://github.com/jikexueyuanwiki/tensorflow-zh

Google Brain Residency Program

New one year immersion program in deep learning research

Learn to conduct deep learning research w/experts in our team
● Fixed one-year employment with salary, benefits, ...

● Goal after one year is to have conducted several research projects

● Interesting problems, TensorFlow, and access to computational resources

Google Brain Residency Program

Who should apply?
● people with BSc, MSc or PhD, ideally in CS, mathematics or statistics

● completed coursework in calculus, linear algebra, and probability, or equiv.

● programming experience

● motivated, hard working, and have a strong interest in deep learning

Google Brain Residency Program

 Program Application & Timeline

DEADLINE: January 15, 2016

Google Brain Residency Program

For more information:
g.co/brainresidency

Contact us:
brain-residency@google.com

http://g.co/brainresidency
http://g.co/brainresidency

