&
TensorFlow: A System for Machine

Learning on Heterogeneous Systems

Jeff Dean
Google

Google Brain team in collaboration with many other teams

Google Brain Team

Mission: Develop advanced Al techniques and make them
useful for people

Strong mix of pure research, applied research, and computer
systems building

Unique Project Directories

Growing Use of Deep Learning at Google

of directories containing model description files

1200

900

600

Across many

products/areas:
Android
Apps
drug discovery
Gmail
Image understanding
Maps
Natural language
understanding
Photos
Robotics research
Speech
Translation
YouTube
... many others ...

&

Deep Learning

Speech
Text
Search
Queries
Images
Videos
Labels
Entities
Words
Audio
Features

Universal Machine Learning

Speech
Text
Search
Queries
Images
Videos
Labels
Entities
Words
Audio
Features

&

What do you want in a machine learning system?

Ease of expression: for lots of crazy ML ideas/algorithms
Scalability: can run experiments quickly

Portability: can run on wide variety of platforms
Reproducibility: easy to share and reproduce research
Production readiness: go from research to real products

TensorFlow:
Second Generation Deep Learning System

TensorFlow

‘¢ TensorFlow

If we like it, wouldn't the rest of the world like it, too?
Open sourced single-machine TensorFlow on Monday, Nov. 9th

e Flexible Apache 2.0 open source licensing
e Updates for distributed implementation coming soon

http://tensorflow.org/

http://tensorflow.org/
http://tensorflow.org/

TensorFlow ™

Version: [master #|

MMIST For ML Beginners

The MMNIST Data
Softrmax Regressions
Implermenting the Regression
Training
Evaluating Our Model

Deep MNIST for Expernts

Setup

Load MNIST Data
Start TensarFlow InteractiveSession

Build a Softmax Regression Model

Flaceholders
WVarizbles
Predicted Class and Cost Function

Trair the Model

Evaluate the Model
Build a Multilayer Comvelutional Metwark
‘Weight Initialization
Comvolution and Pocling
First Corwolutional Layer
Secand Commiutional Layer
Densely Connected Layer
Readout Layer

Traim and Evaluate the Model
TensorFlow Mechanics 101

Tutorial Files

Prepare the Data

GET STARTED 'TUTORIALS HOWTO APl RESOURCES ABOUT

TensorFlow Mechanics 101

This is a technical tutorial, where we walk you through the details of using TensorFlow infrastructure to train
models at scale. We use again MNIST as the example.

View Turorial

Convolutional Neural Networks

An introduction to corvolutional neural networks using the CIFAR-10 data set. Convalutional neural nets are
particularly tailored to images, since they exploit translation invariance to yield more compact and effective
representations of visuzl coment.

View Tutorial

Vector Representations of Words

This tutorial maotivates why it is useful w0 leam to represent words as vectors (called word embeddings). It
imtroduces the word2vec medel 2s an efficient method for ‘earning embeddings. It also covers the high-leve! details
behind roise-contrastive training methods (the biggest recent advance in training embeddings).

View Tutorial

Recurrent Neural Networks

An imroduction to RNNs, wherein we train an LSTM network to predict the next word in an English sentence. (A task
sometimes called language modeling.}

View Turorial

Sequence-to-Sequence Models

A fellow on to the RNN witorial, where we assemble a sequence-to-sequence model for machine ranslation. You
will learn 1o buikd your own English-to-French translator, entirely machine learned, end-to-end.

View Tutorial

http://tensorflow.org/
http://tensorflow.org/

Motivations

DistBelief (1st system):

e Great for scalability, and production training of basic kinds of models
e Not as flexible as we wanted for research purposes

Better understanding of problem space allowed us to
make some dramatic simplifications

TensorFlow: Expressing High-Level ML Computations

e CoreinC++

TensorFlow: Expressing High-Level ML Computations

e CoreinC++
e Different front ends for specifying/driving the computation
o Python and C++ today, easy to add more

TensorFlow: Expressing High-Level ML Computations

e CoreinC++
e Different front ends for specifying/driving the computation
o Python and C++ today, easy to add more

C++ front end Python front end
Core TensorFlow Execution System

(oo) (omv) (pwaoe) (o5 J ()

Portable

Automatically runs models on range of platforms:

from phones ...

to single machines (CPU and/or GPUs) ...

to distributed systems of many 100s of GPU cards

Computation is a dataflow graph

biases Graph of Nodes, also called Operations or ops.

examples

labels

o en 50‘5
Computation is a dataflow graph \N\‘“t

biases Edges are N-dimensional arrays: Tensors

examples

labels

L. xe
Computation is a dataflow graph \N““ s\a

'Biases' is a variable Some ops compute gradients —= updates biases

| biases I:

learning rate

Automatic Differentiation

Similar to Theano, TensorFlow can automatically
calculate symbolic gradients of variables w.r.t. loss
function.

Minimize the mean squared errors.
loss = tf.reduce mean(tf.square(y-predict - y expected))
optimizer = tf.train.GradientDescentOptimizer (0.01)

train = optimizer.minimize (loss)

Much easier to express complex and train complex
models

Computation is a dataflow graph d‘\s“\b“‘ed

Device A

learning rate

Devices: Processes, Machines, GPUs, etc

Send and Receive Nodes (\.\3“\

Device A

Devices: Processes, Machines, GPUs, etc

Send and Receive Nodes (\.\3“\

learning rate

Devices: Processes, Machines, GPUs, etc

m Device A

Send and Receive Nodes di s“\bu’ted

learning rate

Devices: Processes, Machines, GPUs, etc é@

Send and Receive Implementations

e Different implementations depending on source/dest devices
e e.g. GPUs on same machine: local GPU — GPU copy
e e.g. CPUs on different machines: cross-machine RPC

e e.g. GPUs on different machines: RDMA or RPC

Extensible

e Core system defines a number of standard operations
and kernels (device-specific implementations of
operations)

e Easy to define new operators and/or kernels

Session Interface

e Extend:add nodesto computation graph

e Run: execute an arbitrary subgraph

o optionally feeding in Tensor inputs and retrieving Tensor output

Typically, setup a graph with one or a few Extend calls and

then Run it thousands or millions or times

Single Process Configuration

£ B,

single process

' client —— master
G ' session ~___ _ ______
run

- e oam W

execute
subgraph

Distributed Configuration

client J RPC [master]
—_—

[process session Process
run

execute
subgraph

RPC RPC RPC

v

(worker) (worker) (worker
process 1 process 2 process 3

Feeding and Fetching

® ©®

é &
® ®

Run (input={“b”: ...}, outputs={“"f:0”})

Feeding and Fetching

® ® 0

6%
Y S|

Run (1nput={“b”: ...}, outputs={“f:0"}) feed

TensorFlow Single Device Performance
Initial measurements done by Soumith Chintala

Benchmark Forward Forward+Backward
AlexNet - cuDNNv3 on Torch (Soumith) 32 ms 96 ms
AlexNet - Neon (Soumith) 32 ms 101 ms
AlexNet - cuDNNv2 on Torch (Soumith) 70 ms 231 ms
AlexNet - cuDNNv2 on TensorFlow 0.5 (Soumith) 96 ms 326 ms

See https://github.com/soumith/convnet-benchmarks/issues/66

Two main factors:

(1) various overheads (nvcc doesn't like 64-bit tensor indices, etc.)

(2) versions of convolutional libraries being used (cuDNNv2 vs. v3, etc.)

=3

https://github.com/soumith/convnet-benchmarks/issues/66

TensorFlow Single Device Performance
Prong 1: Tackling sources of overhead

Benchmark Forward Forward+Backward
AlexNet - cuDNNv3 on Torch (Soumith) 32 ms 96 ms
AlexNet - Neon (Soumith) 32 ms 101 ms
AlexNet - cuDNNv2 on Torch (Soumith) 70 ms 231 ms
AlexNet - cuDNNv2 on TensorFlow 0.5 (Soumith) 96 ms 326 ms
AlexNet - cuDNNv2 on TensorFlow 0.5 (our machine) 97 ms 336 ms
AlexNet - cuDNNv2 on TensorFlow 0.6 (our machine: soon) 70 ms (+39%) 230 ms (+31%)

=3

TensorFlow Single Device Performance
TODO: Release 0.6 this week improves speed to equivalent
with other packages using cuDNNv2

Subsequent updates will upgrade to faster core libraries
like cuDNN v3 (and/or the upcoming v4)

Also looking to improve memory usage

Single device performance important, but

biggest performance improvements come
from large-scale distributed systems with
model and data parallelism

Experiment Turnaround Time and Research Productivity

Minutes, Hours:

o Interactive research! Instant gratification!
1-4 days

o Tolerable

o Interactivity replaced by running many experiments in parallel
1-4 weeks

o High value experiments only
o Progress stalls

>1 month

o Don't eventry

Transition

e How do you do this at scale?
e How does TensorFlow make distributed training easy?

Model Parallelism

Best way to decrease training time: decrease the step
time

Many models have lots of inherent parallelism

Problem is distributing work so communication doesn'’t
kill you

o local connectivity (as found in CNNs)

o towers with little or no connectivity between towers (e.g. AlexNet)
o specialized parts of model active only for some examples

Exploiting Model Parallelism

On a single core: Instruction parallelism (SIMD). Pretty much
free.

Across cores: thread parallelism. Almost free, unless across
sockets, in which case inter-socket bandwidth matters (QPI on

Intel).
Across devices: for GPUs, often limited by PCle bandwidth.

Across machines: limited by network bandwidth / latency

P

Model Parallelism

00000000

!! /
g A RPN
T

Representation

F'i-..-,.
s
o

Layer 2

Layer |

D" Input Image

Representation

00000000

o
uf

B e
. .
e o

Layer N

(Sometimes) = I
Local Receptive ,k\
Fields 4l

Layer |

“. Input data

Model Parallelism: Partition model across machines %

00000000

e}
o

o
aet
gt

Partition ||Partition 2

Partition 3

/

Partition |

Partition 2

Partition 3

Model Parallelism: Partition model across machines

Minimal network traffic:
The most densely connected
areas are on the same partition

00000000

e
o

i
o

-,
.
b

Partition ||Partition 2| Partition 3
1 1 1
Partition | Partition 2 Partition 3

Data Parallelism

e Use multiple model replicas to process different

examples at the same time

o All collaborate to update model state (parameters) in shared
parameter server(s)

e Speedups depend highly on kind of model
o Dense models: 10-40X speedup from 50 replicas
o Sparse models:
m support many more replicas
m often can use as many as 1000 replicas

P

Data Parallelism

Parameter Servers

p +=Ap

LO@al

a0

JAr

L N

L0

L

Success of Data Parallelism

e Data parallelism is really important for many of Google's

problems (very large datasets, large models):

o RankBrain uses 500 replicas

o |mageNet Inception training uses 50 GPUs, ~40X
speedup

o SmartReply uses 16 replicas, each with multiple GPUs

o State-of-the-art on LM “One Billion Word” Benchmark
model uses both data and model parallelism on 32
GPUs

P

10 vs 50 Replica Inception Synchronous Training

0.8

0.6

0.2

0.4 ."

Precision @ 1

A et et
o
N e

e T

b e e ———] R

50 replicas

‘ * = 10 replicas

20

40

Hours

60

80

10 vs 50 Replica Inception Synchronous Training

Precision @ 1

0.8 | i I E—— 50 replicas

=" 10 replicas

o T
g g

0.6

0.2

0.4
|

5.6 vs. 21.8 (3.9X)

19.6 vs. 80.3 (4.1X)

20

40

Hours

60

80

Using TensorFlow for Parallelism

Trivial to express both model parallelism as well as data
parallelism

e Very minimal changes to single device model code

Devices and Graph Placement

e Given a graph and set of devices, TensorFlow
implementation must decide which device executes
each node

Full and Partial Device Constraints (Hints)

Devices are named hierarchically:

/job:localhost/device:cpu:0
/job:worker/task:17/device:gpu:3

/job:parameters/task:4/device:cpu:0

Client can specify full or partial constraints for nodes in
graph:

“Place thisnode on /job:1localhost/device:gpu:2"

“Place this node on /device:gpu:*”

Placement Algorithm

Given hints, plus a cost model (node execution time
estimates and Tensor size estimates), make placement
decisions

e Current relatively simple greedy algorithm
e Active area of work

Example: LSTM [Hochreiter et al, 1997]

e From research paper to code

def __call_ (self, inputs, state, scope=None):

i = Wigxy + Wiphy—1 + b;
]t p— W].’Eajt —I— W]hht_l —|— b] :rli.:tLlocg.\Slgiir;;::i[:c[;zz(()?cfogzlzr(lth)S/;:i.s:{;)._name_): # "BasicLSTMCell"

Parameters of gates are concatenated into one multiply for efficiency.
¢, h = array_ops.split(1, 2, state)

ft p— Wfﬂl'ajt —I— thht_l —I— bf concat = linear([inputs, hl, 4 x self._num_units, True)

i = input_gate, j = new_input, f = forget_gate, o = output_gate
— h b i, j, f, o = array_ops.split(1, 4, concat)
O = ”o:cxt | ”oh t—1 | o

new_c = c * sigmoid(f + self._forget_bias) + sigmoid(i) * tanh(j)

Cy = O'(ft> (*) Ci—1 - O—(Z't) ® tanh(jt) new_h = tanh(new_c) * sigmoid(o)

return new_h, array_ops.concat(1l, [new_c, new_h])
hy = o(o;) ® tanh(c;)

=3

Sequence-to-Sequence Model

Target sequence

[Sutskever & Vinyals & Le NIPS 2014] X v 7
A A A

— — > — v —> — — —
ottt t 1
B C D _ X Y

Example: LSTM

for i in range(20):
m, ¢ = LSTMCell(x[i], mprev, cprev)
mprev =m
cprev =c

Example: Deep LSTM

for i in range(20):
for d in range(4): # d is depth
input = x[i] if d is 0 else m[d-1]
m[d], c[d] = LSTMCell(input, mprev[d], cprev|[d])
mprev[d] = m[d]
cprev[d] = c[d]

Example: Deep LSTM

for i in range(20):
for d in range(4): # d is depth
input = x[i] if d is 0 else m[d-1]
m[d], c[d] = LSTMCell(input, mprev|[d], cprev[d])
mprev[d] = m[d]
cprev[d] = c[d]

Example: Deep LSTM

for i in range(20):
for d in range(4): # d is depth
with tf.device("/gpu:%d" % d):
input = x[i] if d is 0 else m[d-1]
m[d], c[d] = LSTMCell(input, mprev|[d], cprev[d])
mprev[d] = m[d]
cprev[d] = c[d]

GPUG6 A B c 2
GPU5 | LA B c D | | 80k softmax by
¥ ¥ ¥ 1000 dims
: This is very big!
—> —> —> —> —> —> —>
GPU4 Split softmax into
¥ ¥ ¥ F ¥ 4GPUs
> > > > > > >
GPU3
% % % % % % % %
1 1 1 1 1 1 1 1
GPU2 =1ttt 1000 LSTM cells
% A A Y £ % & % 2000 dims per
: - L L 1 L I timestep
GPU1 > > > > > —>
AN AN IR I N S SO
8k dims per
A B C D a A B C sentence

GPU4

GPU3

GPU2

GPU1

cpPUs LA cl 12
GPU5 | LA c| |b
i 1
BN N
— —)
BN
% 3

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU4

GPU3

GPU2

GPU1

epus (A1 (B (] [P
epus 1A [B] [C] [P
Tt T 1

EN
S ———

BN
E—f—F—+—

EN
e e

T
F—F—F F
p| [-] [a] [B] |[c

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU4

GPU3

GPU2

GPU1

GPUG6

GPUS

Ll >

IENig)

| 1 O

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU4

GPU3

GPU2

GPU1

GPUG6

GPUS

Ll >

1 3l O

| 1 O

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU4

GPU3

GPU2

GPU1

GPUG6

GPUS

Ll >

1 3l O

| 1 O

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU4

GPU3

GPU2

GPU1

GPUG6

GPUS

Ll >

1 3l O

| 1 O

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPUs L2 B c D
GPU5 /; B C; E;
GPU4 |
GPU3
GPU2
GPU1

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPUG6

GPU4

GPU3

GPU2

GPU1

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU4

GPU3

GPU2

GPU1

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU4

GPU3

GPU2

GPU1

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU4

GPU3

GPU2

GPU1

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

TensorFlow Queues

Input prefetching
Grouping similar examples

Randomization/Shuffling

Queue

Example: Deep LSTMs

e Wrinkles
o Bucket sentences by length using a queue per length
o Dequeue when a full batch of same length has
accumulated
o N different graphs for different lengths
o Alternative: while loop

Expressing Data Parallelism

We use the ReplicaDeviceSetter() device function to automatically
assign Variables to the 'ps' jobs.
with tf.device(“/cpu:0”):

Create the Mnist model.

model = MnistModel(batch_size=16, hidden_units=200)

Get an initialized, and possibly recovered session.
sess = tf.Session()

Train the model.
for local_step in xrange(FLAGS.max_steps):
_, loss, step = sess.run([model.train_op, model.loss, model.global_step])
if local_step % 1000 == 0:
print "step %d: %g" % (step, loss)

Expressing Data Parallelism

We use the ReplicaDeviceSetter() device function to automatically
assign Variables to the 'ps' jobs.
with tf.device(tf.ReplicaDeviceSetter(parameter_devices=10)):

Create the Mnist model.

model = MnistModel(batch_size=16, hidden_units=200)

Create a Supervisor. It will take care of initialization, summaries,

checkpoints, and recovery. When multiple replicas of this program are running,

the first one, identified by --task=0 is the 'chief' supervisor (e.g., initialization, saving)
supervisor = tf.Supervisor(is_chief=(FLAGS.task == 0), saver=model.saver)

Get an initialized, and possibly recovered session.
sess = supervisor.PrepareSession(FLAGS.master_job)

Train the model.
for local_step in xrange(int32_max):
_, loss, step = sess.run([model.train_op, model.loss, model.global_step])
if step >= FLAGS.max_steps:
break
if local_step % 1000 == 0:
print "step %d: %g" % (step, loss)

Asynchronous Training

e Unlike DistBelief, no separate parameter server system:
o Parameters are now just stateful nodes in the graph

(" Parameter Device(s) G

Client 3

Client 2

Client 1

\

model

Device C)

Update) < 2P
(Update)<r2F ~
(Update) <22
2 Device A) i Device B)
model |mode||
Jam] | Ja@o) |
= ’ — ”

Asvnchronous Data Parallelism

Synchronous Variant

£ : ™
Parameter Device(s)

AP

(Add)3
i
a—

Client

>(Update]

Device A)

‘ model |

N

\

| @o)
J
<

Device B)

| model l

‘ model |

l@o
v
o

Device C)

l@s

e
et

Synchronous Data Parallelism

Network Optimizations

e Neural net training very tolerant of reduced precision
e e.g. drop precision to 16 bits across network

o
D - &

Network Optimizations

e Neural net training very tolerant of reduced precision
e e.g. drop precision to 16 bits across network

o
D - &

Subgraph Compiler

e Compile small subgraphs together to generate
optimized routine
e Dynamic compiler with caching so sizes are known

learning rate

Devices: Processes, Machines, GPUs, etc é@

Quantization for Inference

e Need even less precision for inference
e 8-bit fixed point works well, but many ways of
quantizing
e Critical for things like mobile devices
o w/quantization, high-end smart phone can run
Inception model at >6 frames per second (fps)

Open Source Status for Distributed TensorFlow

Multi GPU in single machine already in open source release

e See 4-GPU CIFAR1O0 training example in repository

Distributed implementation coming soon:

e GitHub tracking issue: github.
com/tensorflow/tensorflow/issues/23

https://github.com/tensorflow/tensorflow/issues/23
https://github.com/tensorflow/tensorflow/issues/23
https://github.com/tensorflow/tensorflow/issues/23

Concluding Remarks

e Model and Data Parallelism enable great ML work:
o Neural Machine Translation: ~6x speedup on 8 GPUs
o Inception / Imagenet: ~40x speedup on 50 GPUs
o RankBrain: ~300X speedup on 500 machines

e A variety of different parallelization schemes are easy to
express in TensorFlow

Concluding Remarks

e Open Sourcing of TensorFlow
o Rapid exchange of research ideas (we hope!)
o Easy deployment of ML systems into products
o TensorFlow community doing interesting things!

A Few TensorFlow Community Examples

DQN: github.com/nivwusquorum/tensorflow-deepq

NeuralArt: github.com/woodrush/neural-art-tf

Char RNN: github.com/sheriilozair/char-rnn-tensorflow

Keras ported to TensorFlow: github.com/fchollet/keras

Show and Tell: github.com/jazzsaxmafia/show_and_tell.tensorflow
Mandarin translation: github.com/jikexueyuanwiki/tensorflow-zh

https://github.com/nivwusquorum/tensorflow-deepq
https://github.com/woodrush/neural-art-tf
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/fchollet/keras
https://github.com/jazzsaxmafia/show_and_tell.tensorflow
https://github.com/jikexueyuanwiki/tensorflow-zh

github.com/nivwusquorum/tensorflow-deepq

Reinforcement Learning using Tensor Flow

Quick start

Check out Karpathy game in notebooks folder.

® o
0
o @
o ® @ ° ..
. ® oo o
.. ©
" ® 9 o
..' &)
o
. ® B ® o
e ® o & @
S o o o O o0
s s

e malart = = eranrey | SEJY Wit 4704 Bers JW7)

The image above depicts a strategy learned by the DeepQ controller. Available actions are accelerating top, bottom, left or
right. The reward signal is +1 for the green fellas, -1 for red and -5 for orange.

https://github.com/nivwusquorum/tensorflow-deepq

github.com/woodrush/neural-art-tf

"Neural Art" in TensorFlow

An implementation of "A neural algorithm of Artistic style" in TensorFlow, for

* Introductory, hackable demos for TensarFlow, and
* Demonstrating the use of importing various Caffe cnn models (VGG and illustration2vec) in TF.

In this work, | put effort in putting the code simple as possible, for being a good introductory code to TF. For this reason, |
also implemented very basic uses of TensorBoard (the visualizer). | also aimed on demonstrating the use of importing
various Caffe models from *.caffemodel files into TensorFlow, especially models that seemed not to be imported by
anybody yet in TF (as far as | know). Based on https://github.com/ethereon/caffe-tensorflow, | modified the importer so that
it can import illustration2vec (http://illustration2vec.net/), which is another CNN available as a Caffe model. Using different
CNNs yields different results, which reflects the characteristics of the model.

In the Neural Art problem setting, the weights of the CNN are fixed, and the input image into the CNN is the only "trainable”
variable, making the code easy to understand (the optimized/trained image is the output image). | hope this example serves
as a good introduction to TensorFlow as well as for entertainment purposes.

https://github.com/woodrush/neural-art-tf
https://github.com/woodrush/neural-art-tf

github.com/sherjilozair/char-rnn-tensorflow

char-rnn-tensorflow

Multi-layer Recurrent Neural Networks (LSTM, RNN) for character-level language models in Python using Tensorflow.

Inspired from Andrej Karpathy's char-mn.

Requirements

s« Tensorflow

Basic Usage

To train with default parameters on the tinyshakespeare corpus, run python train.py .

To sample from a checkpointed model, python sample.py .

https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow

github.com/fchollet/keras

Keras: Deep Learning library for Theano and
TensorFlow

You have just found Keras.

Keras is a minimalist, highly modular neural networks library, written in Python and capable of running either on top of either
TensorFlow or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result
with the least possible delay is key to doing good research.

Use Keras if you need a deep learning library that:

= allows for easy and fast prototyping (through total modularity, minimalism, and extensibility).

= supports both convolutional networks and recurrent networks, as well as combinations of the two.
s supports arbitrary connectivity schemes (including multi-input and multi-output training).

* runs seamlessly on CPU and GPU.

Head the documentation at Keras.io.

Keras is compatible with: - Python 2.7-3.5 with the Theano backend - Python 2.7 with the TensorFlow backend

=3

https://github.com/fchollet/keras
https://github.com/fchollet/keras

github.com/jazzsaxmafia/show_and_tell.tensorflow

Neural Caption Generator

* |mplementation of "Show and Tell” http://arxiv.org/abs/1411.4555
o Borrowed some code and ideas from Andrej Karpathy's NeuralTalk.
* You need flickr30k data (images and annotations)

Code

« make_flickr_dataset.py : Extracting feats of flickr30k images, and save them in './data/feats.npy'
» model_tensorflow.py : TensorFlow Version
» model_theano.py : Theano Version

Usage

* Flickr30k Dataset Download
» Extract VGG Featues of Flicker30k images (make_flickr_dataset.py)
« Train: run train{) in model_tensorflow.py or model_theano.py
» Test: run test() in model_tensorflow.py or model_theano.py.
o parameters: VGG FC7 feature of test image, trained model path

https://github.com/jazzsaxmafia/show_and_tell.tensorflow
https://github.com/jazzsaxmafia/show_and_tell.tensorflow

github.com/jikexueyuanwiki/tensorflow-zh

TensorFlow is an Open Source Software
Library for Machine Intelligence

i GET STARTED '

{REZBIFRTIE T EES L Android REEIFITHHME TR !
it

2015411 A9H, Google EFZEHIH%E F#1, Google Research S 4% — {41985 5 H4: TensorFlow, $Hi5EaTH
DistBelief fiEMRE T & FEMNME, EEBMNE, SEFEMN, TRABTLLE.

MBFIEIATEEN—FRE, TRUERERERRNEERMARRNERHTRRARTH. 04, SENBEELTF
AHBEITTFUEAEAN. Facebook. R, #i, HEENMNEE. Google B#t#AERD. [TensorFlow] £ Google

@

http://github.com/jikexueyuanwiki/tensorflow-zh
http://github.com/jikexueyuanwiki/tensorflow-zh

é,'% Google Google Brain Residency Program

New one year immersion program in deep learning research

Learn to conduct deep learning research w/experts in our team

e Fixed one-year employment with salary, benefits, ...
e Goal after one year is to have conducted several research projects

e Interesting problems, TensorFlow, and access to computational resources

Google

Brain Residency

Google Brain Residency Program

-
Who should apply?

e people with BSc, MSc or PhD, ideally in CS, mathematics or statistics
e completed coursework in calculus, linear algebra, and probability, or equiv.
e programming experience

e motivated, hard working, and have a strong interest in deep learning

= Google Google Brain Residency Program
'O Brain Residency

Program Application & Timeline

DEADLINE: January 15, 2016

Applications Review Application
Selected candidates will be Result
tacted in February f I
e Announcement!
| oct2015 | MNov2015 | Dec2015 | Jan2016 | Feb2016 | Mar2016 | Apr2015 | May2015 | Jun2016 |
l | \ | \ |
|

Program Start &
Applications Open! Phone & Onsite uﬁr,nﬂﬂn:;

Oct 22 2015 -Jan 15 2016 Interviews June 6 201 6

Google : .
BramResgdency Google Brain Residency Program

For more information:
g.co/brainresidency

Contact us:
brain-residency@google.com

http://g.co/brainresidency
http://g.co/brainresidency

