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Google Brain Team
● Mission: Develop advanced AI techniques and make them 

useful for people

● Strong mix of pure research, applied research, and computer 
systems building



Growing Use of Deep Learning at Google

Android
Apps
drug discovery
Gmail
Image understanding
Maps
Natural language 
understanding
Photos
Robotics research
Speech
Translation
YouTube
… many others ...

Across many 
products/areas:
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Deep Learning

Universal Machine Learning
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Search 
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What do you want in a machine learning system?
● Ease of expression: for lots of crazy ML ideas/algorithms
● Scalability: can run experiments quickly
● Portability: can run on wide variety of platforms
● Reproducibility: easy to share and reproduce research
● Production readiness: go from research to real products



TensorFlow:
Second Generation Deep Learning System



http://tensorflow.org/

If we like it, wouldn’t the rest of the world like it, too?

Open sourced single-machine TensorFlow on Monday, Nov. 9th
● Flexible Apache 2.0 open source licensing
● Updates for distributed implementation coming soon

http://tensorflow.org/
http://tensorflow.org/
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DistBelief (1st system):

● Great for scalability, and production training of basic kinds of models
● Not as flexible as we wanted for research purposes

Better understanding of problem space allowed us to 
make some dramatic simplifications

Motivations



TensorFlow: Expressing High-Level ML Computations

● Core in C++

Core TensorFlow Execution System

CPU GPU Android iOS ...
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TensorFlow: Expressing High-Level ML Computations

● Core in C++
● Different front ends for specifying/driving the computation

○ Python and C++ today, easy to add more

Core TensorFlow Execution System

CPU GPU Android iOS ...

C++ front end Python front end ...



Automatically runs models on range of platforms:

from phones ...

to single machines (CPU and/or GPUs) …

to distributed systems of many 100s of GPU cards

Portable



MatMul

Add Relu

biases

weights

examples

labels

Xent

Graph of Nodes, also called Operations or ops.

Computation is a dataflow graph



with tensors

MatMul

Add Relu

biases

weights

examples

labels

Xent

Edges are N-dimensional arrays: Tensors

Computation is a dataflow graph



with state

Add Mul

biases

...

learning rate

−=...

'Biases' is a variable −= updates biasesSome ops compute gradients

Computation is a dataflow graph



Similar to Theano, TensorFlow can automatically 
calculate symbolic gradients of variables w.r.t. loss 
function.
# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y-predict - y_expected))
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

Much easier to express complex and train complex 
models

Automatic Differentiation



Device BDevice A

distributed

Add Mul
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−=...

Devices: Processes, Machines, GPUs, etc

...

Computation is a dataflow graph
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Device A Device B

distributed

Add Mul

biases

learning rate

−=...

Devices: Processes, Machines, GPUs, etc

Send and Receive Nodes

Send

Recv

Send Recv
Send Recv

... RecvSend



Send and Receive Implementations

● Different implementations depending on source/dest devices

● e.g. GPUs on same machine: local GPU → GPU copy

● e.g. CPUs on different machines: cross-machine RPC

● e.g. GPUs on different machines: RDMA or RPC



Extensible

● Core system defines a number of standard operations 

and kernels (device-specific implementations of 

operations)

● Easy to define new operators and/or kernels



Session Interface

● Extend: add nodes to computation graph

● Run: execute an arbitrary subgraph
○ optionally feeding in Tensor inputs and retrieving Tensor output

Typically, setup a graph with one or a few Extend calls and 

then Run it thousands or millions or times



Single Process Configuration



Distributed Configuration
RPC

RPC RPC RPC



Feeding and Fetching

Run(input={“b”: ...}, outputs={“f:0”})



Feeding and Fetching

Run(input={“b”: ...}, outputs={“f:0”})



Initial measurements done by Soumith Chintala
TensorFlow Single Device Performance

See https://github.com/soumith/convnet-benchmarks/issues/66
Two main factors:
(1) various overheads (nvcc doesn’t like 64-bit tensor indices, etc.)
(2) versions of convolutional libraries being used (cuDNNv2 vs. v3, etc.)

Benchmark Forward Forward+Backward

AlexNet - cuDNNv3 on Torch (Soumith) 32 ms 96 ms

AlexNet - Neon (Soumith) 32 ms 101 ms

AlexNet - cuDNNv2 on Torch (Soumith) 70 ms 231 ms

AlexNet - cuDNNv2 on TensorFlow 0.5 (Soumith) 96 ms 326 ms

https://github.com/soumith/convnet-benchmarks/issues/66


TensorFlow Single Device Performance

Benchmark Forward Forward+Backward

AlexNet - cuDNNv3 on Torch (Soumith) 32 ms 96 ms

AlexNet - Neon (Soumith) 32 ms 101 ms

AlexNet - cuDNNv2 on Torch (Soumith) 70 ms 231 ms

AlexNet - cuDNNv2 on TensorFlow 0.5 (Soumith) 96 ms 326 ms

AlexNet - cuDNNv2 on TensorFlow 0.5 (our machine) 97 ms 336 ms

AlexNet - cuDNNv2 on TensorFlow 0.6 (our machine: soon) 70 ms (+39%) 230 ms (+31%)

Prong 1: Tackling sources of overhead



TensorFlow Single Device Performance

TODO: Release 0.6 this week improves speed to equivalent 
with other packages using cuDNNv2

Subsequent updates will upgrade to faster core libraries 
like cuDNN v3 (and/or the upcoming v4)

Also looking to improve memory usage



Single device performance important, but
….

 biggest performance improvements come 
from large-scale distributed systems with 

model and data parallelism



Experiment Turnaround Time and Research Productivity

● Minutes, Hours:
○ Interactive research!  Instant gratification!

● 1-4 days
○ Tolerable
○ Interactivity replaced by running many experiments in parallel

● 1-4 weeks
○ High value experiments only
○ Progress stalls

● >1 month
○ Don’t even try



Transition
● How do you do this at scale?
● How does TensorFlow make distributed training easy?



Model Parallelism
● Best way to decrease training time: decrease the step 

time
● Many models have lots of inherent parallelism
● Problem is distributing work so communication doesn’t 

kill you
○ local connectivity (as found in CNNs)
○ towers with little or no connectivity between towers (e.g. AlexNet)
○ specialized parts of model active only for some examples



On a single core: Instruction parallelism (SIMD). Pretty much 
free.

Across cores: thread parallelism. Almost free, unless across 
sockets, in which case inter-socket bandwidth matters (QPI on 
Intel).

Across devices: for GPUs, often limited by PCIe bandwidth.

Across machines: limited by network bandwidth / latency

Exploiting Model Parallelism
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Data Parallelism
● Use multiple model replicas to process different 

examples at the same time
○ All collaborate to update model state (parameters) in shared 

parameter server(s)

● Speedups depend highly on kind of model
○ Dense models: 10-40X speedup from 50 replicas
○ Sparse models:

■ support many more replicas
■ often can use as many as 1000 replicas



Data Parallelism

 

Parameter Servers

...Model
Replicas

Data ...

p∆p

p += ∆p



Success of Data Parallelism
● Data parallelism is really important for many of Google’s 

problems (very large datasets, large models):
○ RankBrain uses 500 replicas
○ ImageNet Inception training uses 50 GPUs, ~40X 

speedup
○ SmartReply uses 16 replicas, each with multiple GPUs
○ State-of-the-art on LM “One Billion Word” Benchmark 

model uses both data and model parallelism on 32 
GPUs



10 vs 50 Replica Inception Synchronous Training

Hours

10 replicas
50 replicas



10 vs 50 Replica Inception Synchronous Training

Hours

10 replicas
50 replicas

19.6 vs. 80.3 (4.1X)

5.6 vs. 21.8 (3.9X)



Using TensorFlow for Parallelism
Trivial to express both model parallelism as well as data 
parallelism

● Very minimal changes to single device model code



Devices and Graph Placement
● Given a graph and set of devices, TensorFlow 

implementation must decide which device executes 
each node



Full and Partial Device Constraints (Hints)
Devices are named hierarchically:

/job:localhost/device:cpu:0
/job:worker/task:17/device:gpu:3
/job:parameters/task:4/device:cpu:0

Client can specify full or partial constraints for nodes in 
graph:

“Place this node on /job:localhost/device:gpu:2”

“Place this node on /device:gpu:*”



Placement Algorithm
Given hints, plus a cost model (node execution time 
estimates and Tensor size estimates), make placement 
decisions

● Current relatively simple greedy algorithm
● Active area of work



Example: LSTM [Hochreiter et al, 1997]

● From research paper to code



Sequence-to-Sequence Model

 A  B  C

v

 D __  X  Y  Z

 X  Y  Z  Q

Input sequence

Target sequence

[Sutskever & Vinyals & Le NIPS 2014]



Example: LSTM

for i in range(20):
      m, c = LSTMCell(x[i], mprev, cprev)
      mprev = m
      cprev = c



Example: Deep LSTM

for i in range(20):
  for d in range(4): # d is depth
      input = x[i] if d is 0 else m[d-1]
      m[d], c[d] = LSTMCell(input, mprev[d], cprev[d])
      mprev[d] = m[d]
      cprev[d] = c[d]
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Example: Deep LSTM

for i in range(20):
  for d in range(4): # d is depth
    with tf.device("/gpu:%d" % d):
      input = x[i] if d is 0 else m[d-1]
      m[d], c[d] = LSTMCell(input, mprev[d], cprev[d])
      mprev[d] = m[d]
      cprev[d] = c[d]
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TensorFlow Queues

Input prefetching

Grouping similar examples

Randomization/Shuffling

Queue

...

Enqueue

...

Dequeue



Example: Deep LSTMs
● Wrinkles

○ Bucket sentences by length using a queue per length
○ Dequeue when a full batch of same length has 

accumulated
○ N different graphs for different lengths
○ Alternative: while loop



Expressing Data Parallelism
# We use the ReplicaDeviceSetter() device function to automatically
# assign Variables to the 'ps' jobs.   
with tf.device(“/cpu:0”):
      # Create the Mnist model.
      model = MnistModel(batch_size=16, hidden_units=200)

      # Get an initialized, and possibly recovered session.  
      sess = tf.Session()

      # Train the model.
      for local_step in xrange(FLAGS.max_steps):
        _, loss, step = sess.run([model.train_op, model.loss, model.global_step])
        if local_step % 1000 == 0:
          print "step %d: %g" % (step, loss)



Expressing Data Parallelism
# We use the ReplicaDeviceSetter() device function to automatically
# assign Variables to the 'ps' jobs.   
with tf.device(tf.ReplicaDeviceSetter(parameter_devices=10)):
      # Create the Mnist model.
      model = MnistModel(batch_size=16, hidden_units=200)

      # Create a Supervisor.  It will take care of initialization, summaries,
      # checkpoints, and recovery. When multiple replicas of this program are running,
      # the first one, identified by --task=0 is the 'chief' supervisor (e.g., initialization, saving) 
      supervisor = tf.Supervisor(is_chief=(FLAGS.task == 0), saver=model.saver)

      # Get an initialized, and possibly recovered session.  
      sess = supervisor.PrepareSession(FLAGS.master_job)

      # Train the model.
      for local_step in xrange(int32_max):
        _, loss, step = sess.run([model.train_op, model.loss, model.global_step])
        if step >= FLAGS.max_steps:
          break
        if local_step % 1000 == 0:
          print "step %d: %g" % (step, loss)



Asynchronous Training
● Unlike DistBelief, no separate parameter server system:

○ Parameters are now just stateful nodes in the graph



Synchronous Variant



Network Optimizations
● Neural net training very tolerant of reduced precision
● e.g. drop precision to 16 bits across network

Device A Device B

params
Mat
Mul

Send Recv

Input
...



Network Optimizations
● Neural net training very tolerant of reduced precision
● e.g. drop precision to 16 bits across network

Device A Device B

params
Mat
Mul

Send Recv

Input
...

ToFP16 ToFP32



Device A Device B

Add Mul

biases

learning rate

−=...

Devices: Processes, Machines, GPUs, etc

Send

Recv

Send Recv
Send Recv

... RecvSend

Subgraph Compiler

● Compile small subgraphs together to generate 
optimized routine

● Dynamic compiler with caching so sizes are known



Quantization for Inference
● Need even less precision for inference
● 8-bit fixed point works well, but many ways of 

quantizing
● Critical for things like mobile devices

○ w/quantization, high-end smart phone can run 
Inception model at >6 frames per second (fps)



Open Source Status for Distributed TensorFlow
Multi GPU in single machine already in open source release

● See 4-GPU CIFAR10 training example in repository

Distributed implementation coming soon:

● GitHub tracking issue: github.
com/tensorflow/tensorflow/issues/23

https://github.com/tensorflow/tensorflow/issues/23
https://github.com/tensorflow/tensorflow/issues/23
https://github.com/tensorflow/tensorflow/issues/23


Concluding Remarks
● Model and Data Parallelism enable great ML work:

○ Neural Machine Translation: ~6x speedup on 8 GPUs
○ Inception / Imagenet: ~40x speedup on 50 GPUs
○ RankBrain: ~300X speedup on 500 machines

● A variety of different parallelization schemes are easy to 
express in TensorFlow



Concluding Remarks
● Open Sourcing of TensorFlow

○ Rapid exchange of research ideas (we hope!)
○ Easy deployment of ML systems into products
○ TensorFlow community doing interesting things!



A Few TensorFlow Community Examples
● DQN: github.com/nivwusquorum/tensorflow-deepq

● NeuralArt: github.com/woodrush/neural-art-tf

● Char RNN: github.com/sherjilozair/char-rnn-tensorflow

● Keras ported to TensorFlow: github.com/fchollet/keras

● Show and Tell: github.com/jazzsaxmafia/show_and_tell.tensorflow

● Mandarin translation: github.com/jikexueyuanwiki/tensorflow-zh

...

https://github.com/nivwusquorum/tensorflow-deepq
https://github.com/woodrush/neural-art-tf
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/fchollet/keras
https://github.com/jazzsaxmafia/show_and_tell.tensorflow
https://github.com/jikexueyuanwiki/tensorflow-zh
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Google Brain Residency Program

New one year immersion program in deep learning research

Learn to conduct deep learning research w/experts in our team
● Fixed one-year employment with salary, benefits, ...

● Goal after one year is to have conducted several research projects

● Interesting problems, TensorFlow, and access to computational resources



Google Brain Residency Program

Who should apply? 
● people with BSc, MSc or PhD, ideally in CS, mathematics or statistics

● completed coursework in calculus, linear algebra, and probability, or equiv.

● programming experience

● motivated, hard working, and have a strong interest in deep learning



Google Brain Residency Program

 Program Application & Timeline

DEADLINE: January 15, 2016



Google Brain Residency Program

For more information:
g.co/brainresidency

Contact us:
brain-residency@google.com

http://g.co/brainresidency
http://g.co/brainresidency

